

PROYECTO DE CONSTRUCCIÓN

SUPRESIÓN DEL PASO A NIVEL DE TORRETXO P.K. 37+154 DE LA LÍNEA BILBAO - DONOSTIA

ANEJO Nº 2. ESTRUCTURAS

Anejo nº 2: Estructuras

CONTROL DE CALIDAD						
DOCUMENTO		ANE	JO № 2: ES	STRUCTURAS		
CÓDIGO		FM2147-PC	-AX-02-DTE	-Estructuras-Ed2.d	docx	
EDICIÓN Nº	2		Fecha edi	ición	Junio 2024	
REVISIÓN Nº	1 Fecha rev		visión Junio 2024			
REALIZADO POR	Nombre	JTS		Firma:		
REALIZADO FOR	Fecha	echa 03/06/2024				
REVISADO POR	Nombre	ASE		Firma:		
REVISADO FOR	Fecha	03/06/2024				
APROBADO POR	Nombre JMH Firma:					
AFRODADO FOR	Fecha	03/06/2024	4			

REGISTRO DE MODIFICACIONES

EDIC. / REV.	FECHA	RESPONSABLE MODIFICACIÓN	SECC. / PÁRRAFO MODIFICADO	MODIFICACIÓN EFECTUADA
1	Junio 2024			Edición para comentarios
2	Junio 2024			Revisión

Anejo nº 2: Estructuras

■ ÍNDICE	
1. INTRODUCCIÓN	
2 DESCRIPCIÓN DE LA ESTRUCTURA	1
2.1. MARCO	
2.2. ALETAS	2
3. NORMATIVA UTILIZADA	2
4. CARACTERÍSTICAS DE LOS MATERIALES	3
4.1. TIPO DE AMBIENTE SEGÚN NORMA EHE – 08	3
4.2. HORMIGONES	3
4.3. ACERO	3
5. NIVELES DE CONTROL DE CALIDAD Y COEFICIENTES DE SEGURIDAD	3
5.1. NIVELES DE CONTROL DE CALIDAD	3
5.2. COEFICIENTES DE SEGURIDAD	3
6. ACCIONES	6
7. MODELOS DE CÁLCULO Y COMPROBACIÓN DE SECCIONES	7
7.1. ESTRUCTURA METÁLICA	7
7.2. ALETAS	7
APÉNDICE 1: MEMORIA DE CÁLCULO CAJÓN CERRADO EMPUJADO	

Anejo nº 2: Estructuras

1. INTRODUCCIÓN

El objeto del presente anejo es la descripción de los cálculos utilizados para la redacción del presente "Proyecto de Construcción de la supresión del paso a nivel de Torretxo".

En el mismo, se incluye la justificación del dimensionamiento del cajón empujado, así como las aletas de acompañamiento para la transición entre desmontes.

2. DESCRIPCIÓN DE LA ESTRUCTURA

2.1. MARCO

El marco consiste en un cajón de unas dimensiones interiores de 6,14 m de altura y 7,5 m de anchura de hormigón armado. El espesor de dintel y solera es de 0,90 m mientras que el de los hastiales es de 0,80 m.

El cajón está dimensionado y calculado para ser construido y empujado en sentido de avance de los PPKK mediante un muro de reacción. Por este cajón transcurrirá el vial carretero, mientras que por encima pasará la actual vía de Euskotren Bilbao – San Sebastián, habiéndose contemplado el futuro desdoblamiento de las vías.

Estás vías serán apeadas mediante paquetes de carriles situados sobre las traviesas. La longitud de los "paquetes de carril" deberá exceder en 4 m como mínimo, por cada lado, la longitud de la vía situada sobre el marco. Se utilizarán traviesas de madera en toda la longitud de la zona a apear, sustituyéndose en caso de ser de otro material las existentes.

Por cada hilo se dispondrán dos "paquetes de carril" de 54 kg/ml, uno exterior de 3 unidades en cualquier sección y otro interior de 3 unidades en cualquier sección.

Estos paquetes soportarán, mediante abrazaderas tipo "garrutti", unos cupones transversales de 1,30 m de 32 kg/ml y en posición invertida, sobre los que apoyar la vía a través de una placa de asiento con la cara superior inclinada con el mismo ángulo de la vía. Estos cupones se colocarán entre las traviesas distanciados entre sí 1,20 m, disponiendo las traviesas de madera con la cara superior plana, sin cajeos, y utilizando el mismo tipo de placa de asiento que para los cupones.

Durante el desplazamiento del marco, las vías se sustentarán mediante vigas de acero formadas cada una por dos perfiles HEM 240 ensamblados y apoyados en un extremo sobre la estructura mediante apoyos deslizantes y en el terreno subyacente a las vías o sobre elementos de reparto por el otro, en función de la capacidad del terreno para admitir las cargas que le sean transmitidas en condiciones de seguridad, Todos los elementos deberán soportar las cargas del ferrocarril para una velocidad de circulación reducida a 30 km/h, con deformaciones admisibles para la circulación y en condiciones de seguridad. La distancia máxima entre ejes de vigas será inferior a 3 m y se colocarán en dirección paralela al eje del marco.

En cuanto a la traslación del marco, se dispondrá de una central hidráulica y del número de pistones o gatos necesarios para suministrar una fuerza equivalente de 1,45 veces el peso del marco, aplicada en la superficie situada en los 0,40 m inferiores del canto de la losa inferior y en su parte posterior.

Adicionalmente, se deberá disponer de elementos distanciadores para trasladar el punto de apoyo de los pistones o gatos, en cantidad tal que pueda realizarse un desplazamiento del marco superior a 5 m con el uso de los mismos.

A medida que se desplace el marco, se construirá una prolongación del muro de reacción en tramos de 5 m de longitud máxima y anchura igual a la de la plataforma mediante una contralosa de 50 cm de espesor, pudiendo llegar a 1,2 m en caso necesario, con hormigón en masa dotado

Anejo nº 1: Cartografía y topografía

de una acelerante de fraguado para obtener una resistencia de 120 kg/cm² en probeta cúbica a las 12 horas de edad, y reforzada en la zona de apoyo de los gatos.

Tanto la parte enterrada del muro de reacción como toda la superficie del trasdós del mismo, deberán ser hormigonadas contra el terreno natural.

Los taludes de excavación en durante el proceso de traslación se realizarán con una inclinación máxima de 45° y la arista superior deberá estar, en cualquier punto, a una distancia horizontal superior a 3 m del carril más próximo y de cualquier otra construcción o servicio cercano. Se considera una línea de abono durante la excavación que permita un sobreancho máximo de 30 cm, de cara al mortero para relleno marco – excavación estimado para garantizar el contacto marco – terreno.

2.2. ALETAS

Una vez ubicado el cajón en su posición definitiva, dará lugar el proceso de demolición de las aletas de avance para la ejecución de las aletas definitivas para la contención del terreno.

Estas aletas han sido dimensionadas para recibir la proyección de los taludes 3H:2V de los taludes definitivos, tanto los paralelos a la traza como los provenientes de la vía ferroviaria. En cuanto al dimensionado de los mismos, se ha tenido en cuenta la excavación necesaria en el entorno del marco para garantizar la plataforma del futuro desdoblamiento de vía, para evitar taludes excesivos al encontrarnos en trinchera.

Estas aletas han sido dimensionadas y definidas por los siguientes rangos:

- H < 4 m
- 4 m < H < 5 m
- 5 m < H < 6 m</p>
- 6 m < H < 7 m

Son de hormigón armado y con forma de L, para evitar excavaciones adicionales sobre los taludes definitivos. En la medida de lo posible, estas aletas se cimentarán sobre los excesos de losa de marco resultantes del proceso de empuje.

Debido a que tanto por la solera del cajón como a través de las zapatas de las aletas interceptadas deberán discurrir unas conducciones de drenaje de Ø315 mm, se ha adoptado el criterio de espesores de zapata de aleta de 90 cm para poder permitir por su interior el paso de las conducciones.

Las aletas de avance de la estructura serán demolidas. En lo que respecta a las aletas de entrada, se demolerá la aleta del lado acera, manteniendo y prolongando la aleta izquierda.

Dado que para la excavación y ejecución de las aletas de mayor altura se requiere una excavación provisional forzada de 1H:1V, se dispondrá un sostenimiento mediante 10 cm de gunita en los primeros 5 m desde el entronque con el talud ferroviario.

3. NORMATIVA UTILIZADA

En la definición de las estructuras de este proyecto se han tenido en cuenta las normas e instrucciones y documentación de referencia que se relacionan a continuación:

- Código Estructural : R.D. 470/2021, de 29 de junio
- Instrucción de acciones a considerar en puentes de ferrocarril (IAPF 07).
- Norma de construcción sismorresistente (NCSP 07), R.D. 997/2002 de 27 de Septiembre de 2002.

Anejo nº 2: Estructuras

- CTE SE C. Seguridad Estructural Cimentaciones, Marzo 2.006.
- CTE SE A. Seguridad Estructural Acero, Enero 2.008.
- CTE SE AE. Seguridad Estructural Acciones en la edificación, Marzo 2.006.

4. CARACTERÍSTICAS DE LOS MATERIALES

4.1. TIPO DE AMBIENTE SEGÚN NORMA EHE - 08.

- Elementos en contacto con el terreno: (Tipo IIa + Qa)
- Cara inferior de dintel y cara superior de solera: Clase general de exposición con corrosión de origen diferente de los cloruros y humedad alta (Tipo IIa)

4.2. HORMIGONES

ELEMENTO ESTRUCTURAL	CALIDAD DEL HORMIGÓN	F _{ck} (Mpa)	γс	R nom(mm)
HORMIGÓN DE LIMPIEZA	HL-150/P/20	15	1,5	-
HORMIGÓN MARCO Y ALETAS	HA-30/B/20/XC2+XA1	30	1,5	45

4.3. ACERO

Acero para armaduras: B-500-S, fyk=500 Mpa, γs=1.15

5. NIVELES DE CONTROL DE CALIDAD Y COEFICIENTES DE SEGURIDAD.

5.1. NIVELES DE CONTROL DE CALIDAD

Control de ejecución

Toda la obra
 Nivel de control NORMAL

Control de materiales

Hormigón
 Acero en armaduras pasivas
 Acero estructural
 Nivel de control NORMAL
 Nivel de control NORMAL

5.2. COEFICIENTES DE SEGURIDAD

Se siguen las prescripciones C.E. y del CTE-SE-A asumiendo los niveles de control señalados en el punto anterior. De acuerdo con ella, se señalan a continuación los coeficientes de seguridad y coeficientes de combinación que se utilizan en los cálculos y comprobaciones estructurales.

Estados límites últimos (ELU)

Los estados límites últimos se comprueban con los siguientes coeficientes de seguridad:

Coeficientes de seguridad de los materiales (situación persistente o transitoria):

Hormigón $\gamma_c = 1,50$ Acero en armaduras pasivas $\gamma_s = 1,15$ Acero estructural $\gamma_s = 1,05$

Anejo nº 1: Cartografía y topografía

Coeficientes de seguridad de los materiales (situación accidental):

Hormigón $\gamma_c = 1{,}30$ Acero en armaduras pasivas $\gamma_s = 1{,}00$ Acero estructural $\gamma_s = 1{,}00$

Coeficientes de seguridad de las acciones (situación persistente o transitoria):

	Efecto favorable	Efecto desfavorable
Permanente	γ _G = 1,00	γ _G = 1,35
Permanente de valor no constante	γ _{G*} = 1,00	γ _{G*} = 1,50
Variable	γο = 0,00	γQ = 1,50

Coeficientes de seguridad de las acciones (situación accidental):

	Efecto favorable	Efecto desfavorable
Permanente	γ _G = 1,00	γ _G = 1,00
Permanente de valor no constante	γ _{G*} = 1,00	γ _{G*} = 1,00
Variable	γο = 0,00	γQ = 1,00

Anejo nº 2: Estructuras

	Acation	E	Efecto
Acción		Favorable	Desfavorable
Permanente de valor	Peso propio	1,0	1,35
constante (G)	Carga muerta	1,0	1,35
	Pretensado P ₁	1,0	1,0 / 1,2 ⁽¹⁾ / 1,3 ⁽²⁾
	Pretensado P ₂	1,0	1,35
	Otras presolicitaciones	1,0	1,0
Permanente de valor no constante (<i>G*</i>)	Reológicas	1,0	1,35
	Empuje del terreno	1,0	1,5
	Asientos	0	1,2 / 1,35 ⁽³⁾
	Rozamiento de apoyos deslizantes	1,0	1,35
	Sobrecarga de uso	0	1,35
	Sobrecarga de uso en terraplenes	0	1,5
Variable (O)	Acciones climáticas	0	1,5
Variable (Q)	Empuje hidrostático	0	1,5
	Empuje hidrodinámico	0	1,5
	Sobrecargas de construcción	0	1,35

Estados límites de servicio (ELS)

Los estados límites de servicio se comprueban con los siguientes coeficientes de seguridad:

	Efecto favorable	Efecto desfavorable
Permanente	$\gamma_{G} = 1,00$	$\gamma_G = 1,00$
Permanente de valor no constante	γ _{G*} = 1,00	γ _{G*} = 1,00
Variable	$\gamma_{Q} = 0.00$	$\gamma_{Q} = 1,00$

Anejo nº 1: Cartografía y topografía

	Acción	Ef	ecto
	Acción	Favorable	Desfavorable
Permanente de valor	Peso propio	1,0	1,0
constante (G)	Carga muerta	1,0	1,0
	Pretensado P ₁	0,9 ⁽¹⁾	1,1 ⁽¹⁾
	Pretensado P ₂	1,0	1,0
	Otras presolicitaciones	1,0	1,0
Permanente de valor no constante (<i>G</i> *)	Reológicas	1,0	1,0
()	Empuje del terreno	1,0	1,0
	Asientos	0	1,0
	Rozamiento de apoyos deslizantes	1,0	1,0
	Sobrecarga de uso	0	1,0
	Sobrecarga de uso en terraplenes	0	1,0
Variable (O)	Acciones climáticas	0	1,0
Variable (Q)	Empuje hidrostático	0	1,0
	Empuje hidrodinámico	0	1,0
	Sobrecargas de construcción	0	1,0

Coeficientes de combinación (ψ)

Para la determinación de los valores de combinación de las acciones se adoptan los siguientes coeficientes.

Valor de combinación ψ ₀	Valor frecuente Ψ1	Valor cuasi – permanente ψ ₂
0,60	0,50	0,20

6. ACCIONES

PERMANENTES

Peso propio de estructura.

Carga muerta balasto 20 kN/m³

VARIABLES

Sobrecarga UIC71 aplicada según IAPF-07

Empuje del terreno

Anejo nº 2: Estructuras

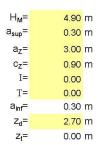
7. MODELOS DE CÁLCULO Y COMPROBACIÓN DE SECCIONES

7.1. ESTRUCTURA METÁLICA

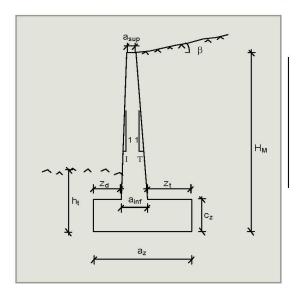
En lo que respecta al marco, se adjunta apéndice de memoria de cálculo del mismo en "Apéndice 1. Memoria de cálculo Cajón Cerrado Empujado".

7.2. ALETAS

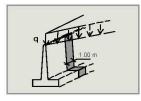
Las aletas han sido dimensionadas en función de los rangos de alturas definidos con anterioridad.


El dimensionamiento de estas secciones resistentes se han realizado con hojas de cálculo Excel desarrolladas por TYPSA, para la estabilidad geotécnica y estructural de los muros.

FM2147-TORRETXO-ALETA 4M


CÁLCULO DE MURO MÉNSULA SEGÚN NORMA EHE 08

GEOMETRÍA


CARACTERÍSTICAS DEL TERRENO DE APOYO, RELLENO Y AGUA

h _t =	0.90	m
β =	33.7	o
peso específico		
del relleno γ _r =	20	KN/m³
angulo de rozamiento		
del relleno ϕ_r =	40	o
angulo de rozamiento		
contacto relleno-muro δ_{M} =	13.3	o
angulo de rozamiento		
contacto terreno-muro δ_T =	30	o
cohesión =	1.00	N/mm²
o _{adm} =	17.64	N/mm²
f _p =	1.25	
hw _I =	0.00	m
hw $_{\mathrm{T}}$ =	0.00	m

Coeficientes de empuje activo (Coulomb)						
Kah =	0.33	Kav =	0.08	(Para el trasdós inclinado		
Kah =	0.33	Kav =	0.08	en agotamiento y fisuración) (Para el trasdós vertical y para el trasdós inclinado en estabilidad)		

CARGAS

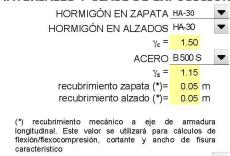
carga uniforme indefinida q

q _{cp} =	0.0	KN/m.l.	de talud
$q_{sc} =$	0.0	KN/m.l.	de talud

sismo 🗌

coeficiente de aceleración horizontal $K_h = 0.12$ coeficiente de aceleración vertical $K_v = 0.06$

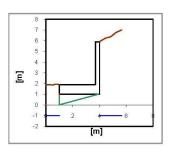
mayorar la parte sísmica del empuje de tierras por el coeficiente $\kappa = 1.0$


Anejo nº 2: Estructuras

TENSIONES EN EL TERRENO

 $\sigma_{\text{med}} = 0.04 \text{ N/mm}^2 \qquad (\sigma_{\text{med}})_{\text{adm}} = 17.64 \text{ N/mm}^2 \qquad \text{longitud comprimida}$ $\sigma_{\text{max}} = 0.08 \text{ N/mm}^2 \qquad (\sigma_{\text{max}})_{\text{adm}} = 22.05 \text{ N/mm}^2 \qquad l_c = 2.92 \text{ m}$

DESLIZAMIENTO Y VUELCO


MATERIALES Y CLASE DE EXPOSICIÓN

CLASE DE EXPOSICIÓN EN ZAPATA Qa

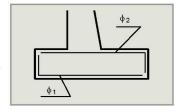
CLASE DE EXPOSICIÓN EN ALZADOS Qa

comprobación de la geometría y ley de tensiones

COEFICIENTES DE MAYORACIÓN PARA ESTADO LÍMITE ÚLTIMO

TIPO DE ACCIÓN	SITUACIONES P Y TRANSITORIA		SITUACIONES A	CCIDENTALES
	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable
PERMANENTE	1.00	1.35	1.00	1.00
EMPUJE DE TIERRAS	1.00	1.50	1.00	1.00
EMPUJE DE AGUA	1.00	1.50	1.00	1.00
VARIABLE	0.00	1.50	0.00	1.00
ACCIDENTAL			1.00	1.00

Anejo nº 1: Cartografía y topografía


CÁLCULO A FLEXIÓN DE ZAPATA

zarpa delantera flexible

 $\begin{array}{c} \text{Md=} \\ \text{A}_{\text{nec}} = \\ & 15.7 \\ \hline \\ \phi_1(\text{mm}) \\ \text{sep(m)} \\ \text{Adisp} \\ \end{array} \begin{array}{c} 16 \\ \hline \\ 0.150 \\ \text{Ad} \\ \text{me} \end{array} \text{por cuantía mecánica mínima}$

Adisp zarpa trasera rígida

 $\begin{array}{c} \text{Md=} & \text{0.0 mKN} \\ A_{\text{nec}} = & 15.7 \text{ cm}^2/\text{m.a. por cuantía mecánica mínima} \\ \hline \phi_2(\text{mm}) & 16 \hline \\ \text{sep(m)} & 0.150 \\ \text{Adisp} & 13.4 \text{ cm}^2/\text{m.a.} \\ \end{array}$

COMPROBACIÓN A FISURACIÓN EN ZAPATA

zarpa delantera flexible

 $\begin{array}{cccc} M = & 122.3 \text{ mKN} \\ w_{\text{adm}} = & 0.20 \text{ mm} \\ w_{\text{max}} = & \text{mm} & \text{No hay fisuración} \\ \textbf{zarpa trasera rígida} \end{array}$

M= 0.0 mKN w_{adm}= 0.20 mm w_{máx}= mm

COMPROBACIÓN A CORTANTE EN ZAPATA

en zarpa delantera

 $\begin{array}{cccc} d = & 0.86 \text{ m} \\ \xi = & 1.48 \\ \rho_1 = & 0.0016 \\ V_{cu} = & 423.15 \text{ KN} \\ V_d = & 3544.43 \text{ KN} \\ A_{\text{sv,nec}} = & 965.8 \text{ cm}^2/\text{m.l.} \end{array}$

	cercos	horquillas
φ(mm)	0	0 🔻
sep(m)	0.200	0.150
número/m.a.	1	2
$A_{sv,disp} =$	0.0	cm²/m.l.

en zarpa trasera

 $\begin{array}{ccc} d= & 0.86 \text{ m} \\ \xi= & 1.48 \\ \rho_1= & 0.0016 \\ V_{cu}= \text{ zarpa rígida } \text{ KN} \\ V_d= & \text{ KN} \\ A_{\text{sv.nec}}= & \text{ cm}^2/\text{m.l.} \end{array}$

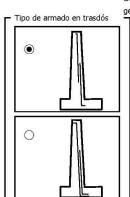
	cer	cos	hc	orqu	ıillas
φ(mm)	0	•		0	•
sep(m)	0.	250		0.	400
número/m.a.		0			2
$A_{sv,disp} =$		0.0	cm²/m.	J.	

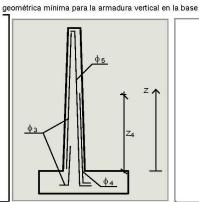
Anejo nº 2: Estructuras

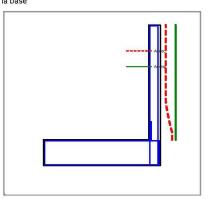
CÁLCULO A FLEXOCOMPRESIÓN DE ALZADO

En base de alzado (z=0)

Para M_d = 106.3 mKN


y máximo Nd= 30.0 KN Anec= 10.3 cm²/m.a.


Familia		3	(4	4	5	
φ(mm)	12	•	0	•	16	•	
sep(m)	0.1	150	0.	150	0.1	50	
A _{disp} (*)	7	.5	1:	3.4			cm²/m


 Intervalos de armadura

 z₄ (m)
 3.00

 z₅ (m)
 3.00

COMPROBACIÓN A FISURACIÓN EN ALZADO

En z=	0.0	m
h=	0.30	m
M=	70.86	mKN
N=	30.00	ΚN

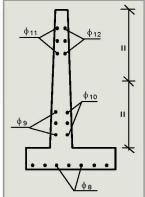
 $W_{adm} = 0.20 \text{ mm}$ $W_{m\acute{a}x} = 0.20 \text{ mm}$

COMPROBACIÓN A CORTANTE EN ALZADO

en base de muro

d=	0.26	m
ξ=	1.89	
$\rho_1 =$	0.005	
_{o' cd} =	0.10	N/mm²
V _{cu} =	184.65	KN
$V_d =$	79.62	KN
A _{sv,nec} =	0.0	cm²/m.l.

	cercos		h	orqu	illas
φ(mm)	0	•		0	•
sep(m)	0.200			0.	200
número/m.a.		0			0
$A_{sv,disp} =$		0.0	cm²/m	J.	



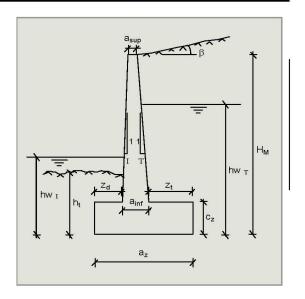
Anejo nº 1: Cartografía y topografía

RESTO DE ARMADURA EN ZAPATA Y ALZADO

Familia		8	ф9	+	φ1	0	φ1	1 +	ф1	2
Cuantía geom.(‰)		0.9		1.5			1.6			
Anec(*)(cm²)		8.1		4	.5			4	.8	
φ(mm)	12	•	12	▼	12	•	12	•	12	•
sep(m)	0.1	150	0.1	150	0.1	150	0.1	150	0.1	150
Adisp (cm²)		7.5					15.1			

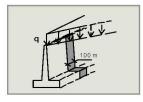
Armadura necesaria estrictamente por cuantía geométrica

FM2147-TORRETXO-ALETA 5M


CÁLCULO DE MURO MÉNSULA SEGÚN NORMA EHE 08

GEOMETRÍA

H _M =	5.90	m
a _{sup} =	0.30	m
a _z =	3.40	m
c _z =	0.90	m
I=	0.00	
T=	0.06	
a _{inf} =	0.60	m
$z_d =$	2.80	m
$z_t =$	0.00	m


CARACTERÍSTICAS DEL TERRENO DE APOYO, RELLENO Y AGUA

<mark>90</mark> m	0.90	h _t =
.7 °	33.7	β =
		peso específico
<mark>20</mark> KN/m²	20	del relleno γ _r =
		angulo de rozamiento
40 °	40	del relleno ϕ_r =
		angulo de rozamiento
.3 °	13.3	contacto relleno-muro δ_{M} =
		angulo de rozamiento
30 °	30	contacto terreno-muro $\delta_{\rm T}$ =
<mark>00</mark> N/mm	1.00	cohesión =
<mark>34</mark> N/mm	17.64	$\sigma_{\sf adm}$ =
25	1.25	f _p =
<mark>oo</mark> m	0.00	$hw_{I} =$
<mark>00</mark> m	0.00	hw $_{\mathrm{T}}$ =

Coeficientes de empuje activo (Coulomb)						
Kah =	0.37	Kav =	0.11	(Para el trasdós inclinado		
Kah =	0.33	Kav =	0.08	en agotamiento y fisuración) (Para el trasdós vertical y para el trasdós inclinado en estabilidad)		

CARGAS

carga uniforme indefinida q

 $q_{cp} = 0.0$ KN/m.l. de talud $q_{sc} = 0.0$ KN/m.l. de talud

sismo 🗌

coeficiente de aceleración horizontal K $_{\rm h}$ = 0.12 coeficiente de aceleración vertical K $_{\rm v}$ = 0.06

mayorar la parte sísmica del empuje de tierras por el coeficiente $\kappa = 1.0$

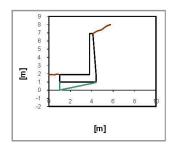
Anejo nº 1: Cartografía y topografía

TENSIONES EN EL TERRENO

 $\sigma_{med} =$ 0.05 N/mm² $(\sigma_{\text{med}})_{\text{adm}} = 17.64 \text{ N/mm}^2$ longitud comprimida σ_{máx} = 0.10 N/mm² $(\sigma_{m\acute{a}x})_{adm} = 22.05 \text{ N/mm}^2$ $l_c = 3.40 \text{ m}$

DESLIZAMIENTO Y VUELCO

 $\gamma_d =$ 30.31 $(\gamma_{\rm d})_{\rm adm} = 1.50$ γ_v= $(\gamma_{\rm v})_{\rm adm} = 1.80$ 1.93 considera empuje pasivo en puntera? $K_p =$ 10.00 peso específico del terreno γ_T = 18.00 KN/m³


MATERIALES Y CLASE DE EXPOSICIÓN

HORMIGÓN EN ZAPATA HA-30 HORMIGÓN EN ALZADOS HA-30 $\gamma_c = 1.50$ ACERO B 500 S $\gamma_s = 1.15$ recubrimiento zapata (*)= 0.05 m recubrimiento alzado (*)= 0.05 m

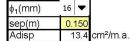
(*) recubrimiento mecánico a eje de armadura longitudinal. Este valor se utilizará para cálculos de flexión/flexocompresión, cortante y ancho de fisura característico

CLASE DE EXPOSICIÓN EN ZAPATA Qa CLASE DE EXPOSICIÓN EN ALZADOS Qa

comprobación de la geometría y ley de tensiones

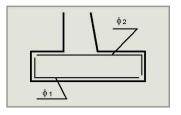
COEFICIENTES DE MAYORACIÓN PARA ESTADO LÍMITE ÚLTIMO

TIPO DE ACCIÓN	SITUACIONES P Y TRANSITORIA		SITUACIONES A	CCIDENTALES
	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable
PERMANENTE	1.00	1.35	1.00	1.00
EMPUJE DE TIERRAS	1.00	1.50	1.00	1.00
EMPUJE DE AGUA	1.00	1.50	1.00	1.00
VARIABLE	0.00	1.50	0.00	1.00
ACCIDENTAL			1.00	1.00



CÁLCULO A FLEXIÓN DE ZAPATA

zarpa delantera flexible


Md= 327.6 mKN
Anec= 15.6 cm²/m.a. por cuantía mecánica mínima

zarpa trasera rígida

Md= 0.0 mKN Anec= 15.6 cm²/m.a. por cuantía mecánica mínima

			_ 8
ϕ_2 (mm)	16	•	
sep(m)	0.	150	
Adisp	1	3.4	cm²/m.a.

COMPROBACIÓN A FISURACIÓN EN ZAPATA

zarpa delantera flexible

M= 221.2 mKN w_{adm}= 0.20 mm

w_{máx}= mm No hay fisuración

zarpa trasera rígida

M = 0.0 mKN $W_{\text{adm}} = 0.20 \text{ mm}$ $W_{\text{máx}} = \text{mm}$

COMPROBACIÓN A CORTANTE EN ZAPATA

en zarpa delantera

 $\begin{array}{cccc} d = & 0.85 \text{ m} \\ \xi = & 1.49 \\ \rho_1 = & 0.0016 \\ V_{cu} = & 421.28 \text{ KN} \\ V_d = & 155.93 \text{ KN} \\ A_{\text{Sv,nec}} = & 0.0 \text{ cm}^2/\text{m.l.} \end{array}$

	cer	cos	horquilla		ıillas
φ(mm)	0	•		0	▼]
sep(m)	0.	200		0.	150
número/m.a.		1			2
$A_{sv,disp} =$		0.0	cm²/m	J.	

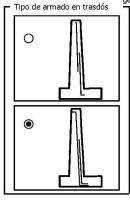
en zarpa trasera

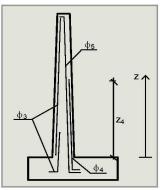
 $\begin{array}{cccc} d= & 0.85 \text{ m} \\ \xi= & 1.49 \\ \rho_1= & 0.0016 \\ V_{cu}= \text{ zarpa rígida } & KN \\ V_d= & KN \\ A_{\text{sv,nec}}= & cm^2/\text{m.l.} \end{array}$

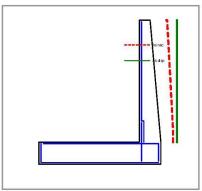
	cer	cos	horqui		ıillas
φ(mm)	0	•		0	•
sep(m)	0.	250		0.	400
número/m.a.		0			2
$A_{sv,disp} =$		0.0	cm²/m.	1.	

Anejo nº 1: Cartografía y topografía

CÁLCULO A FLEXOCOMPRESIÓN DE ALZADO


En base de alzado (z=0) Para M_d = 230.2 mKN


y máximo Nd= 55.3 KN Anec= 10.1 cm²/m.a.


Familia	ф3	ф4	ф5	
φ(mm)	16 🔻	0 🔻	16	
sep(m)	0.150	0.150	0.150	
A _{disp} (*)	13.4	13.4		cm²/m.a

Intervalos de armadura				
z ₄ (m)	3.00			
z ₅ (m)	0.00			

(*) Se ha comprobado que se supera la cuantía geométrica mínima para la armadura vertical en la base de armado en trasdós

COMPROBACIÓN A FISURACIÓN EN ALZADO

En z= 0.0 m h= 0.60 m M= 153.50 mKN N= 55.31 KN

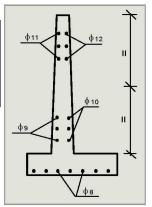
 $W_{adm} = 0.20 \text{ mm}$ $W_{m\acute{a}x} = 0.00 \text{ mm}$

COMPROBACIÓN A CORTANTE EN ALZADO

en base de muro

 $\begin{array}{lll} d= & 0.53 \text{ m} \\ \xi= & 1.61 \\ \rho_1= & 0.003 \\ \sigma'_{cd}= & 0.09 \text{ N/mm}^2 \\ V_{cu}= & 316.18 \text{ KN} \\ V_d= & 124.52 \text{ KN} \\ A_{sv.nec}= & 0.0 \text{ cm}^2/\text{m.I.} \end{array}$

	cercos		ho	orqu	illas
φ(mm)	0	•		0	•
sep(m)	0.	200		0.	200
número/m.a.		0			0
A _{sv,disp} =		0.0	cm²/m	1.	

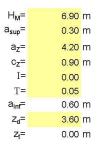


Anejo nº 2: Estructuras

RESTO DE ARMADURA EN ZAPATA Y ALZADO

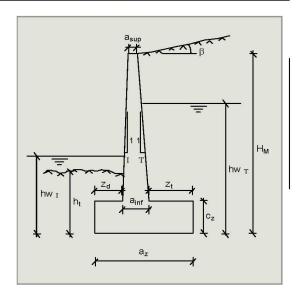
Familia	ф8	ф9 +	ф10	ф11 +	φ ₁₂
Cuantía geom.(‰)	0.9	1	.5	1	.6
Anec ^(*) (cm²)	8.1	7	.5	7	.2
φ(mm)	16 🔻	12 🔻	12	12 🔻	12
sep(m)	0.150	0.150	0.150	0.150	0.150
Adisp (cm²)	13.4	15	5.1	15	5.1

Armadura necesaria estrictamente por cuantía geométrica

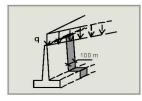


Anejo nº 1: Cartografía y topografía

FM2147-TORRETXO-ALETA 6M


CÁLCULO DE MURO MÉNSULA SEGÚN NORMA EHE 08

GEOMETRÍA


CARACTERÍSTICAS DEL TERRENO DE APOYO, RELLENO Y AGUA

h _t =	0.90	m
β =	33.7	o
peso específico		
del relleno γ _r =	20	KN/m³
angulo de rozamiento		
del relleno ϕ_r =	40	o
angulo de rozamiento		
contacto relleno-muro δ_{M} =	13.3	0
angulo de rozamiento		
contacto terreno-muro $\delta_{\rm T}$ =	30	o
cohesión =	1.00	N/mm²
σ _{adm} =	17.64	N/mm²
f _p =	1.25	
hw _I =	0.00	m
hw $_{\mathrm{T}}$ =	0.00	m

Coeficientes de empuje activo (Coulomb)					
Kah =	0.36	Kav =	0.11	(Para el trasdós inclinado	
Kah =	0.33	Kav =	0.08	en agotamiento y fisuración) (Para el trasdós vertical y para el trasdós inclinado en estabilidad)	

CARGAS

carga uniforme indefinida q

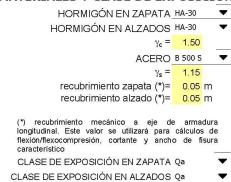
 $q_{cp} = 0.0 \text{ KN/m.l. de talud}$ $q_{sc} = 0.0 \text{ KN/m.l. de talud}$

sismo 🗌

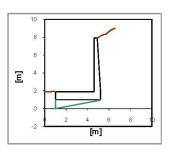
coeficiente de aceleración horizontal K_h = 0.12 coeficiente de aceleración vertical K_v = 0.06

mayorar la parte sísmica del empuje de tierras por el coeficiente $\kappa = 1.0$

Anejo nº 2: Estructuras


TENSIONES EN EL TERRENO

 $\sigma_{\rm med} = 0.05 \ {\rm N/mm^2} \qquad (\sigma_{\rm med})_{\rm adm} = 17.64 \ {\rm N/mm^2} \qquad {\rm longitud\ comprimida}$ $\sigma_{\rm max} = 0.10 \ {\rm N/mm^2} \qquad (\sigma_{\rm max})_{\rm adm} = 22.05 \ {\rm N/mm^2} \qquad {\rm l_c} = 4.20 \ {\rm m}$


DESLIZAMIENTO Y VUELCO

MATERIALES Y CLASE DE EXPOSICIÓN

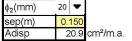
comprobación de la geometría y ley de tensiones

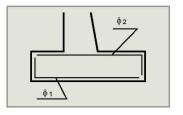
COEFICIENTES DE MAYORACIÓN PARA ESTADO LÍMITE ÚLTIMO

TIPO DE ACCIÓN	SITUACIONES P Y TRANSITORIA		SITUACIONES A	CCIDENTALES
	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable
PERMANENTE	1.00	1.35	1.00	1.00
EMPUJE DE TIERRAS	1.00	1.50	1.00	1.00
EMPUJE DE AGUA	1.00	1.50	1.00	1.00
VARIABLE	0.00	1.50	0.00	1.00
ACCIDENTAL			1.00	1.00

Anejo nº 1: Cartografía y topografía

CÁLCULO A FLEXIÓN DE ZAPATA


zarpa delantera flexible


Md= 528.3 mKN A_{nec} = 15.6 cm²/m.a. por cuantía mecánica mínima ϕ_1 (mm) 20 \blacktriangledown

sep(m) 0.150 Adisp 20.9 cm²/m.a.

zarpa trasera rígida

Md= 0.0 mKN A_{nec} = 15.6 cm²/m.a. por cuantía mecánica mínima $\phi_2(\text{mm})$ 20 \blacktriangleright

COMPROBACIÓN A FISURACIÓN EN ZAPATA

zarpa delantera flexible

M= 358.0 mKN w_{adm}= 0.20 mm

w_{máx}= mm No hay fisuración

zarpa trasera rígida

 $\begin{array}{lll} \text{M=} & 0.0 \text{ mKN} \\ \text{W}_{\text{adm}} = & 0.20 \text{ mm} \\ \text{W}_{\text{máx}} = & \text{mm} \end{array}$

COMPROBACIÓN A CORTANTE EN ZAPATA

en zarpa delantera

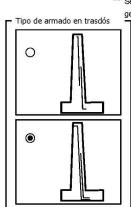
 $\begin{array}{cccc} d = & 0.85 \text{ m} \\ \xi = & 1.49 \\ \rho_1 = & 0.0025 \\ V_{cu} = & 421.28 \text{ KN} \\ V_d = & 228.87 \text{ KN} \\ A_{\text{sv,nec}} = & 0.0 \text{ cm}^2/\text{m.I.} \end{array}$

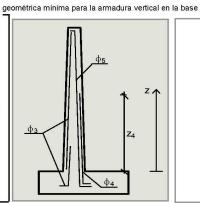
	cer	cos	h	orqu	uillas
φ(mm)	0	•		0	•
sep(m)	0.	200		0	150
número/m.a.		1			2
$A_{sv,disp} =$		0.0	cm²/m	J.	

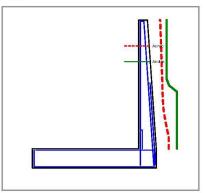
en zarpa trasera

	cer	cos	ho	rqu	ıillas
φ(mm)	0	•		0	•
sep(m)	0.	250		0.	400
número/m.a.		0			2
A _{sv,disp} =		0.0	cm²/m.	l.	

Anejo nº 2: Estructuras


CÁLCULO A FLEXOCOMPRESIÓN DE ALZADO


En base de alzado (z=0)


Para M_d = 391.3 mKN y máximo Nd= 66.4 KN Anec= 16.1 cm²/m.a.

Familia	ф3	ф4	ф5	
φ(mm)	16 🔻	16 🔻	16	
sep(m)	0.150	0.150	0.150	
A _{disp} (*)	13.4	26.8		cm²/m

Intervalos de armadura				
z ₄ (m)	3.00			
z ₅ (m)	0.00			

COMPROBACIÓN A FISURACIÓN EN ALZADO

n z=	0.0 m	
h=	0.60 m	
M =	260.84 mKN	
N=	66 38 KN	

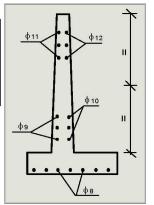
w_{adm}= 0.20 mm w_{máx}= 0.15 mm

COMPROBACIÓN A CORTANTE EN ALZADO

en base de muro

d=	0.54	m
ξ=	1.61	
$\rho_1 =$	0.005	
o' _{cd} =	0.11	N/mm²
V _{cu} =	317.25	KN
$V_d =$	195.38	KN
$A_{sv,nec} =$	0.0	cm²/m.l.

	cercos	cos h		illas
φ(mm)	0 🔻		0	•
sep(m)	0.200)	0.	200
número/m.a.	()		0
$A_{sv,disp} =$	0.0	cm²/m	ı.l.	



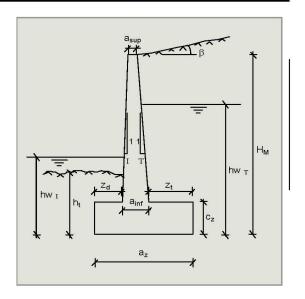
Anejo nº 1: Cartografía y topografía

RESTO DE ARMADURA EN ZAPATA Y ALZADO

Familia	ф8	ф9	+	φ1	0	φ1	1 +	ф1	2
Cuantía geom.(‰)	0.9)	- 1	.5			- 1	.6	
Anec ^(*) (cm²)	8.1	5	7	.5			7	.2	
φ(mm)	16 🔻	12	•	12	•	12	•	12	•
sep(m)	0.150	0.1	150	0.1	150	0.1	150	0.	150
Adisp (cm²)	13.4	_		5.1			15	5.1	

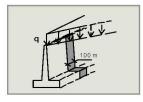
Armadura necesaria estrictamente por cuantía geométrica

FM2147-TORRETXO-ALETA 7M


CÁLCULO DE MURO MÉNSULA SEGÚN NORMA EHE 08

GEOMETRÍA

H _M =	7.90	m
a _{sup} =	0.30	m
a _z =	5.50	m
c _z =	0.90	m
Ι=	0.00	
Τ=	0.06	
a _{inf} =	0.70	m
$z_d =$	4.80	m
7.=	0.00	m


CARACTERÍSTICAS DEL TERRENO DE APOYO, RELLENO Y AGUA

h _t =	0.80	m
β=	33.7	0
peso específico		
del relleno γ _r =	20	KN/m³
angulo de rozamiento		
del relleno ϕ_r =	40	0
angulo de rozamiento		
contacto relleno-muro δ_{M} =	13.3	0
angulo de rozamiento		
contacto terreno-muro δ_T =	30	0
cohesión =	1.00	N/mm²
$\sigma_{\sf adm}$ =	17.64	N/mm²
f _p =	1.25	
hw_{I} =	0.00	m
hw $_{\mathrm{T}}$ =	0.00	m

Coeficientes de empuje activo (Coulomb)							
Kah =	0.37	Kav =	0.11	(Para el trasdós inclinado			
Kah =	0.33	Kav =	0.08	en agotamiento y fisuración) (Para el trasdós vertical y para el trasdós inclinado en estabilidad)			

CARGAS

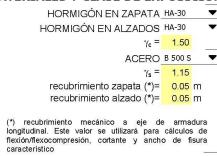
carga uniforme indefinida q

q_{cp} = 0.0 KN/m.l. de talud q_{sc} = 0.0 KN/m.l. de talud

sismo 🗌

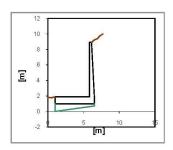
coeficiente de aceleración horizontal K_h= 0.12 coeficiente de aceleración vertical K _v = 0.06

mayorar la parte sísmica del empuje de tierras por el coeficiente $\kappa = 1.0$


Anejo nº 1: Cartografía y topografía

TENSIONES EN EL TERRENO

 $\sigma_{\rm med} = 0.05 \text{ N/mm}^2 \qquad (\sigma_{\rm med})_{\rm adm} = 17.64 \text{ N/mm}^2 \qquad \text{longitud comprimida}$ $\sigma_{\rm max} = 0.08 \text{ N/mm}^2 \qquad (\sigma_{\rm max})_{\rm adm} = 22.05 \text{ N/mm}^2 \qquad l_c = 5.50 \text{ m}$


DESLIZAMIENTO Y VUELCO

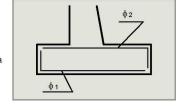
MATERIALES Y CLASE DE EXPOSICIÓN

CLASE DE EXPOSICIÓN EN ZAPATA Qa CLASE DE EXPOSICIÓN EN ALZADOS Qa

comprobación de la geometría y ley de tensiones

COEFICIENTES DE MAYORACIÓN PARA ESTADO LÍMITE ÚLTIMO

TIPO DE ACCIÓN	SITUACIONES P Y TRANSITORIA		SITUACIONES ACCIDENTALES		
	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable	
PERMANENTE	1.00	1.35	1.00	1.00	
EMPUJE DE TIERRAS	1.00	1.50	1.00	1.00	
EMPUJE DE AGUA	1.00	1.50	1.00	1.00	
VARIABLE	0.00	1.50	0.00	1.00	
ACCIDENTAL			1.00	1.00	


CÁLCULO A FLEXIÓN DE ZAPATA

zarpa delantera flexible

 $\begin{array}{c|c} Md = & 797.4 \text{ mKN} \\ A_{nec} = & 22.2 \text{ cm}^2/\text{m.a. por flexion} \\ \hline \phi_1(\text{mm}) & 32 \boxed{\blacktriangledown} \\ \text{sep(m)} & 0.150 \\ \text{Adisp} & 53.6 \text{ cm}^2/\text{m.a.} \end{array}$

zarpa trasera rígida

 $\begin{array}{c} \text{Md=} & \text{0.0 mKN} \\ \text{A}_{\text{nec}} = & 15.6 \text{ cm}^2/\text{m.a. por cuantia mecánica mínima} \\ \hline \phi_2(\text{mm}) & 20 & \\ \text{sep(m)} & 0.150 \\ \text{Adisp} & 20.9 \text{ cm}^2/\text{m.a.} \end{array}$

COMPROBACIÓN A FISURACIÓN EN ZAPATA

zarpa delantera flexible

 $\begin{array}{ccc} \text{M=} & 543.3 \text{ mKN} \\ \text{W}_{\text{adm}} = & 0.20 \text{ mm} \\ \text{W}_{\text{max}} = & 0.11 \text{ mm} \\ \text{\textbf{zarpa trasera rígida}} \\ \text{M=} & 0.0 \text{ mKN} \\ \text{W}_{\text{adm}} = & 0.20 \text{ mm} \end{array}$

COMPROBACIÓN A CORTANTE EN ZAPATA

w_{máx}=

en zarpa delantera

mm

	cer	cos	horquillas		
φ(mm)	0	•		0	~
sep(m)	0.	200		0.	150
número/m.a.		1			2
$A_{sv,disp} =$		0.0	cm²/m.	1.	

en zarpa trasera

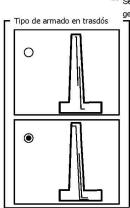
 $\begin{array}{cccc} d= & 0.85 \text{ m} \\ \xi= & 1.49 \\ \rho_1= & 0.0025 \\ V_{cu}= \text{ zarpa rígida} & \text{KN} \\ V_d= & \text{KN} \\ A_{\text{Sv,nec}}= & \text{cm}^2/\text{m.l.} \end{array}$

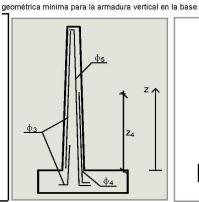
	cer	cos	horquillas		
φ(mm)	0	•		0	•
sep(m)	0.	250		0.	400
número/m.a.		0			2
$A_{sv,disp}=$		0.0	cm²/m.	1.	

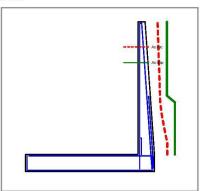
Anejo nº 1: Cartografía y topografía

CÁLCULO A FLEXOCOMPRESIÓN DE ALZADO

En base de alzado (z=0) Para M_d = 628.6 mKN


y máximo Nd= 85.7 KN Anec= 21.5 cm²/m.a. Familia ϕ_3 ϕ_4 ϕ_5


Familia	ф3	ф4	4	5	
φ(mm)	16 🔻	16 🔻	20	•	
sep(m)	0.150	0.150	0.1	150	
A _{disp} (*)	13.4	34.3			cm²/n


 Intervalos de armadura

 Z4 (m)
 3.00

 Z5 (m)
 0.00

COMPROBACIÓN A FISURACIÓN EN ALZADO

En z= 0.0 m h= 0.70 m M= 419.09 mKN N= 85.67 KN

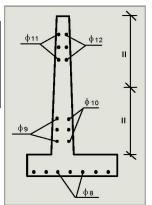
 $W_{adm} = 0.20 \text{ mm}$ $W_{m\acute{a}x} = 0.17 \text{ mm}$

COMPROBACIÓN A CORTANTE EN ALZADO

en base de muro

 $\begin{array}{cccc} d = & 0.63 \text{ m} \\ \xi = & 1.56 \\ \rho_1 = & 0.005 \\ \sigma'_{cd} = & 0.13 \text{ N/mm}^2 \\ V_{cu} = & 359.63 \text{ KN} \\ V_d = & 269.08 \text{ KN} \\ A_{sv.nec} = & 0.0 \text{ cm}^2/\text{m.I.} \end{array}$

	cercos		h	horquilla	
φ(mm)	0	•		0	▼
sep(m)	0.	200		0.	200
número/m.a.		0			0
A _{sv,disp} =		0.0	cm²/m	Д.	



Anejo nº 2: Estructuras

RESTO DE ARMADURA EN ZAPATA Y ALZADO

Familia	ф8	ф9 +	Ф10	ф ₁₁ +	ф12
Cuantía geom.(‰)	0.9	1	.5	1	.6
Anec ^(*) (cm²)	8.1	7	.5	8	.0
φ(mm)	16 🔻	12 🔻	12	12 🔻	12 🔻
sep(m)	0.150	0.150	0.150	0.150	0.150
Adisp (cm²)	13.4	15	5.1	15	5.1

Armadura necesaria estrictamente por cuantía geométrica

Anejo nº 2: Estructuras

,	,	
APENDICE 1: MEMORIA DE	CALCULO CAJO	N CERRADO EMPUJADO

MEMORIA DE CÁLCULO CAJÓN CERRADO EMPUJADO DE HORMIGÓN ARMADO PASO BAJO FFCC EN BERRIZ (VIZCAYA)

La Estructura consiste fundamentalmente en un cajón cerrado de hormigón armado cuyos laterales o hastiales tienen forma de cuña para facilitar su hinca por empuje mediante el sistema PETRUCCO.

Las dimensiones libres interiores son de 6,14 mts. de altura y 7,50 mts. de anchura. Las secciones del dintel y solera tienen un canto de 0.90 m. Las de los hastiales 0,80 m.

Sobre esta Estructura, una vez situada en su posición definitiva, discurrirán dos vías de Euskotren, con la disposición reflejada en el Plano E-1.

NORMATIVA.-

Por la naturaleza de los materiales utilizados y la función a que está destinada la Estructura son de aplicación las siguientes Normativas:

Instrucción EHE-08 IAPF-07

CARACTERISTICAS DE LOS MATERIALES.-

Se han considerado las siguientes características de los materiales y coeficientes de seguridad correspondientes a un Nivel de Control NORMAL:

RES.CARACT.HORMIGÓN: 300 Kp/cm2 HA-30 RES.CARACT.ACERO: 5100 Kp/cm2 B-500SD

COEF.MINORACIÓN HORM: 1.50 COEF.MINORACIÓN ACERO: 1.15

COEF.MAYORACIÓN CARGAS (IAPF-07): 1.35 (CP) ; 1.50 (SC y CP de valor no constante)

1,00 (CP favorables)

CÁLCULO DE LA ESTRUCTURA.-

La Estructura se analiza mediante el análisis del marco rectangular cerrado esviado de ancho 1 m., sometido a cargas uniformemente repartidas perpendiculares a la directriz de cada uno de sus elementos y cuya dirección es hacia el interior del marco, considerando cargas distintas para dintel, laterales y solera, variables según la hipótesis considerada:

CARGAS SOBRE DINTEL:

Permanentes:

- 1-Peso propio de las tierras más el balasto.
- 2-Peso propio del dintel.

Sobrecargas:

De acuerdo con la IAPF-07 se considera el tren de cargas UIC71, multiplicado por el coeficiente de clasificación 0,91, con un reparto de cargas en función de la altura total de recubrimiento que a su vez quedan afectadas del coeficiente de impacto (1,44) que indica la misma.

CARGAS SOBRE CARAS LATERALES:

Cargas permanentes: Empuje al reposo que producen las cargas permanentes (mínimas o máximas).

Sobrecargas: Empuje al reposo que producen las sobrecargas.

CARGAS SOBRE LA SOLERA:

Son las mismas que las del dintel añadiendo el peso propio de los laterales. Se supone que la reacción del terreno es uniforme en toda la solera.

El método de cálculo es el matricial sin consideración de las deformaciones por esfuerzos axiles, empleando el Programa "M-C" de PyCe Ingenieros.

Se realizan tres hipótesis de cálculo distintas, para cada tipo de empuje, al objeto de determinar los esfuerzos pésimos en las distintas secciones de la estructura:

HIPOTESIS I.- Máxima carga en dintel y mínima en laterales.

Dintel - Cargas permanentes máximas + Sobrecargas.

Laterales- Empuje producido por las cargas permanentes mínimas actuando fuera del cajón.

Solera - Cargas permanentes máximas + Sobrecargas.

HIPOTESIS II.- Mínima carga en dintel y máxima carga en laterales.

Dintel - Cargas permanentes mínimas.

Laterales - Empuje producido por las cargas permanentes máximas + Sobrecargas actuando fuera del marco.

Solera - Cargas permanentes mínimas.

HIPOTESIS III.- Máxima carga en el dintel y máxima en los laterales.

Dintel - Cargas permanentes máximas + Sobrecargas.

Laterales - Empuje producido por las cargas permanentes máximas + Sobrecargas actuando fuera del cajón.

Solera - Cargas permanentes máximas + Sobrecargas.

En el listado de los resultados se detalla para cada hipótesis y para cada elemento (dintel, lateral, solera) los esfuerzos y las cuantías en nueve secciones distintas, que por simetría, para el dintel y solera quedan reducidas a cinco.

La armadura señalada como Us1 es la correspondiente a la cara traccionada. Se consideran momentos positivos aquellos que producen tracciones en las caras exteriores.

La cuantía Vsu, corresponde a una primera aproximación de la necesaria para resistir el esfuerzo cortante, una vez deducida la colaboración del hormigón. Posteriormente se realiza el dimensionamiento a cortadura de acuerdo con la EHE.

También se indica la presión media sobre el terreno en la situación analizada y que se verá incrementada por las cargas permanentes y sobrecargas actuantes en el interior del cajón.

Se realiza comprobación de las condiciones de fisuración de cada una de las secciones de armado dispuestas, de acuerdo con el tipo de ambiente definido y las especificaciones de la EHE, habiendo considerado los siguientes tipos; IIa+Qa para el exterior en contacto con el terreno de Dintel, Solera y Hastiales y IIa para las caras interiores del cajón.

ELEMENTOS DE MANIOBRA.-

Se acompaña cálculo justificativo de los elementos auxiliares como Solera y Muro de Empuje.

Madrid, Abril de 2018

PYCE ingenieros S.A. Fido: Lorenzo Muzás Labad Ingeniero de Caminos Colg. 4421

MURO Y SOLERA DE EMPUJE sistema PETRUCCO

CLIENTE: TYPSA OBRA: BERRIZ (VIZCAYA)

FECHA: ABRIL-2018

FI.TERRENO = 35 °

ANCHO DE VIA = 1,07 MTS. Nº DE VIAS = 2

DIMENSIONES DEL CAJÓN.- (Dimensiones M,T)

	Nº	L1	L2	ANCHO	M2	ESPESOR	М3
L.SUPERIOR	-	11,44	11,44	7,50	85,80	0,90	77,22
LATERAL-1	-	14,88	17,89	7,94	130,10	0,80	104,08
LATERAL-2	-	16,18	20,48	7,94	145,54	0,80	116,43
L.INFERIOR	-	16,18	14,88	7,50	116,48	0,90	104,83
OTROS	-0,50	4,08		2,04	-4,16	0,80	-3,33
OTROS	-0,50	5,38		2,69	-7,24	0,80	-5,79
OTROS		0,00		0,00		0,00	0,00
OTROS	0	0,00			0,0000		0,00

PESO DEL CAJÓN 983,60 TN.

SUPERFICIE LATERAL = 264,24 M2

ALT.SUP. TIERRAS = 0,40 M. DENSIDAD = 2,64 TN/M3 ALT.SUP. BALASTO = 0,35 M. DENSIDAD = 2,00 TN/M3

CARGA PERMANENTE SUPERIOF 4,01 TN/M2

DATOS EMPUJE.-

A.Roz hormigon-hormigon : 27,00 ° A.Roz hormigon-terreno : 23,00 °

Coeficiente empuje estatico : 1,45

ancho alto largo

Solera de empuje 9,70 0,20 19,56 Peso Solera-Guias : Guias 0,28 0,40 19,56 105,82 tn.

Presión sobre laterales.- Coef. Emp. reposo = 0,43

Psup = 0.75 tn/m2 Pinf = 9.69 tn/m2

Presion media = 5,22 tn/m2 Superficie = 264,24 m2

Presion Normal = 1378,82 tn.

EMPUJE TOTAL MAX. 1575,34 TN EMPUJE TOTAL MIN.= 1086,44 TN TRACCIÓN MÁXIMA EN SOLERA 56,17 TN

Se dispone de doble parrilla B-500s en solera con diámetro 10 m.m. cada 20 cm. Capacidad Mecánica total longitud. 331,23 tn. longitudinal

Coeficiente de seguridad adicional = 5,90

MURO DE EMPUJE.- Htotal = 4,00 m.

 $\begin{aligned} & \text{Hsup} = & 2,35 \quad \text{m. Altura gatos} = & 0,30 \quad \text{m.} \\ & \text{Hinf} = & 1,65 \quad \text{m. Canto solera} = & 0,20 \quad \text{m.} \end{aligned}$

Ancho = 12,70 m. Empuje pasivo mínimo = 82,4963 t/ml AMPLIACION Empuje pasivo máximo = 119,6197 t/ml LATERAL = 3,00 M. Cota Ep = 1,9648 m. 1,9648 m.

Pres.cota empuje = 20,65 tn/m2 29,94 tn/m2 Pres.cota solera = 20,87 tn/m2 30,26 tn/m2

MURO DE EMPUJE Sistema Petrucco EHE

CLIENTE: TYPSA OBRA: BERRIZ (VIZCAYA)

FECHA: ABRIL 2018

ALTO...... 4,00 MTS ALTURA APOYO...... 0,50 MTS ANCHO.... 1,00 MTS ANCHURA APOYO..... 1,00 MTS

CANTO.... 1,00 MTS DESPLAZAMIENTO..... 0,0352 MTS (+hacia abajo)

T..PASIVA ADMISIBLE TERRENO...... 35 T/M2

N....... 119,62 TN N-CENTRADA........ 119,62 TN M-CENTRADO....... -4,21 TxM

TENSIONES EN EL TERRENO

ZONA COMPRIMIDA 4,00 MTS TENSION EXTREMO 31,48 T/M2

COEF.MAYORACIÓN ACCIONES 1,50

SUPERIOR 28,33 T/M2 VALIDO COEF.MINORACIÓN ACERO 1,15 INFERIOR 31,48 T/M2 VALIDO COEF.MINORACIÓN HORMIGÓN 1,50

MOMENTO FLECTOR fck...... 250 kp/cm2

 VUELO....
 1,79 MTS
 válido
 t1......
 28,33 t/m2

 distancia (S1
 1,86 mts
 t2......
 29,79 t/m2

 d. útil.....
 0,95 mts
 Md......
 74,78 MxT

Uc...... 1583,33 Tn(long) U vert. 80,15 tn

U horiz. 24,05 tn 30% U long

Acero B-500s

A. Longitudinal 0 25 cada 0,20 mts 128,05 Tn.
A. Transversal 0 16 cada 0,30 mts 125,30 Tn.

CORTANTE

t1...... 28,33 t/m2 distancia (S2 0,84 mts t2...... 28,99 t/m2

ancho 1,00 mts Vd...... 35,90 tn válido

Vcu..... 42,93 tn

COEFICIENTE DE IMPACTO ENVOLVENTEIAPF B 2.1.2

Mantenimiento normal V<= 120 km/h Estructura no resonante IAPF B 2.3.2

Estructura porticada 3 vanos L1 L2 L3

10,44 7,04 7,04 m

n = 3 k = 1,30

Longitud determinante L0 10,6253 m

 Φ 2 = 1,291 Φ 3 = **1,436**

CÁLCULO MARCO EMPUJADO SISTEMA PETRUCCO IAPF-07 EHE-08

PyCe Ingenieros S.L. 03-26-2018

CLIENTE: TYPSA

SITUACIÓN: P.I. Berriz (Vizcaya)

DEFINICIÓN GEOMÉTRICA COBERTURA SUPERIOR Luz horizont. => 9.64 mts. Alt. cabeza carril => 0.75 mts. Luz vertical => 6.14 mts. Alt. balasto => 0.40 mts. Alt. tierras => 0.00 mts. Canto dintel => 90.00 cm. Alt. tierras => 0.00 mts. Alt. carril+traviesa => 0.35 mts. Canto hastial => 80.00 cm Canto solera => 90.00 cm MATERIALES Y COEFICIENTES GENERALES ANCHO DE VIA : Métrico (EHE-08) Coef.Clasificación => 0.91 Peso propio vía => 0.420 t/m Res.car.H. \Rightarrow 300 Kp/cm2 Res.car. A \Rightarrow 5000 Kp/cm2 SC.equivalente => 3.92 Tn/m2 Coef.min. H => 1.50 Coef.min. A => 1.15 (Fibra media dintel) Dens.tierras => 2.64 Tn/m3 Dens.balasto => 2.00 Tn/m3 Ang.roz.int. => 35 II min Carga lateral => 6.50 Tn/m2 II max Ko => Coef. impac. => => 5.93 Tn/m2 0.43 I min 1.44 Carga solera I max => 12.03 Tn/m2 II min => 5.93 Tn/m2 Recubrimiento=> 4.50 cm

En aquellas combinaciones en las que una acción sea favorable, el coeficiente de mayoración de la misma será igual a la unidad.

Reparto => Balasto 1:4 Tierras 1:2 Hormigón 1:1

ESFUERZOS SIN MAYORAR EN LA ESTRUCTURA (M,T) _____

DINTEL (HIP. I) ==========

SECCION	N	V	M
0	18.235	 48.721	52.214
L/8	18.235	36.540	-3.419
L/4	18.235	24.360	-43.156
3L/8	18.235	12.180	-66.999
L/2	18.235	0.000	-74.946

LATERAL (HIP. I)

SECCION	N	V	M
0 L/8 L/4 3L/8 L/2 5L/8 3L/4 7L/8	48.721 50.481 52.241 54.001 55.761 57.521 59.281 61.041 62.801	18.235 13.017 7.799 2.582 -2.636 -7.854 -13.072 -18.290 -23.508	52.214 38.463 29.304 24.736 24.760 29.376 38.584 52.383 70.774
_			

SOLERA (HIP. I)

SECCION	N	V	M
0	23.508	62.801	70.774
L/8	23.508	47.100	-0.937
L/4	23.508	31.400	-52.158
3L/8	23.508	15.700	-82.891
L/2	23.508	0.000	-93.136

ESFUERZOS SIN MAYORAR EN LA ESTRUCTURA (M,T)

DINTEL (HIP. II)

SECCION	N	V	М
0	20.243	16.861	25.086
L/8	20.243	12.645	5.834
L/4	20.243	8.430	-7.918
3L/8	20.243	4.215	-16.169
L/2	20.243	0.000	-18.920

LATERAL (HIP. II)

SECCION	N	V	M
0 L/8 L/4 3L/8 L/2 5L/8 3L/4 7L/8	16.861 18.621 20.381 22.141 23.901 25.661 27.421 29.181 30.941	20.243 14.523 8.803 3.084 -2.636 -8.356 -14.076 -19.796 -25.516	25.086 9.789 -0.475 -5.705 -5.902 -1.065 8.805 23.709 43.646
П	30.941	-23.310	43.040

SOLERA (HIP. II)

SECCION	N	V	М
0	25.516	30.941	43.646
L/8	25.516	23.205	8.315
L/4	25.516	15.470	-16.920
3L/8	25.516	7.735	-32.062
L/2	25.516	-0.000	-37.109

ESFUERZOS SIN MAYORAR EN LA ESTRUCTURA (M,T)

DINTEL (HIP. III)

===========

SECCION	N	V	М
0	20.243	48.721	53.368
L/8	20.243	36.540	-2.264
L/4	20.243	24.360	-42.002
3L/8	20.243	12.180	-65.845
L/2	20.243	0.000	-73.792

LATERAL (HIP. III)

SECCION	N	V	M
0	48.721	20.243	53.368
L/8	50.481	14.523	38.071
L/4	52.241	8.803	27.807
3L/8	54.001	3.084	22.577
L/2	55.761	-2.636	22.380
5L/8	57.521	-8.356	27.217
3L/4	59.281	-14.076	37.087
7L/8	61.041	-19.796	51.991
L	62.801	-25.516	71.928

SOLERA (HIP. III)

SECCION	N	V	M
0	25.516	62.801	71.928
L/8	25.516	47.100	0.217
L/4	25.516	31.400	-51.004
3L/8	25.516	15.700	-81.737
L/2	25.516	0.000	-91.982

ESFUERZOS MAYORADOS EN LA ESTRUCTURA (M,T)

DINTEL (HIP. I)

Us1 (min.) = 67.60 Tn.

SECCION	Nd	Vd	Md	Us1	Vsu
0	17.312	70.176	70.200	75.89	34.33
L/8	17.312	52.632	-9.933	67.60	16.78
L/4	17.312	35.088	-67.170	72.08	0.00
3L/8	17.312	17.544	-101.512	116.15	0.00
L/2	17.312	0.000	-112.960	131.27	0.00

LATERAL (HIP. I)

Us1 (min.) = 59.60 Tn.

SECCION	Nd	Vd	Md	Us1	Vsu
0	70.176	17.312	70.200	62.80	0.00
L/8	72.552	12.095	57.260	59.60	0.00
L/4	74.928	6.877	48.913	59.60	0.00
3L/8	77.304	1.659	45.157	59.60	0.00
L/2	79.680	-3.559	45.993	59.60	0.00
5L/8	82.056	-8.777	51.421	59.60	0.00
3L/4	84.432	-13.995	61.441	59.60	0.00
7L/8	86.808	-19.213	76.052	63.82	0.00
L	89.184	-24.430	95.255	92.68	0.00

SOLERA (HIP. I)

Us1 (min.) = 67.60 Tn.

SECCION	Nd	Vd	Md	Us1	Vsu
0	24.430	89.184	95.255	104.53	53.33
L/8	24.430	66.888	-6.582	67.60	31.04
L/4	24.430	44.592	-79.323	83.93	8.74
3L/8	24.430	22.296	-122.967	141.33	0.00
L/2	24.430	0.000	-137.515	161.14	0.00

Valores Vsu aproximados de comprobación posterior

ESFUERZOS MAYORADOS EN LA ESTRUCTURA (M,T)

DINTEL (HIP. II)

SECCION	Nd	Vd	Md	Us1	Vsu
0 L/8 L/4 3L/8 L/2	31.683 31.683 31.683 31.683 31.683	16.861 12.645 8.430 4.215 0.000	31.661 12.408 -1.343 -9.595 -12.345	67.60 67.60 67.60 67.60 67.60	0.00 0.00 0.00 0.00

LATERAL (HIP. II)

Us1 (min.) = 59.60 Tn.

SECCION	Nd	Vd	Md	Us1	Vsu
0 L/8 L/4 3L/8 L/2 5L/8 3L/4 7L/8	16.861 18.621 20.381 22.141 23.901 25.661 27.421 29.181	31.683 23.103 14.523 5.944 -2.636 -11.216 -19.796 -28.376	31.661 7.555 -9.000 -18.006 -19.461 -13.366 0.279 21.475	59.60 59.60 59.60 59.60 59.60 59.60 59.60 59.60	0.08 0.00 0.00 0.00 0.00 0.00 0.00
L	30.941	-36.955	50.221	59.60	5.35

SOLERA (HIP. II)

Us1 (min.) = 67.60 Tn.

SECCION	Nd	Vd	Md	Us1	Vsu
0	36 . 955	30.941	50.221	 67 . 60	0.00
L/8	36.955	23.205	14.890	67.60	0.00
L/4	36.955	15.470	-10.346	67.60	0.00
3L/8	36.955	7.735	-25.487	67.60	0.00
L/2	36.955	-0.000	-30.534	67.60	0.00

Valores Vsu aproximados de comprobación posterior

ESFUERZOS MAYORADOS EN LA ESTRUCTURA (M,T)

DINTEL (HIP. III)

SECCION	Nd	Vd	Md	Us1	Vsu
0	30.760	70.176	77 . 928	79.02	34.33
L/8	30.760	52.632	-2.204	67.60	16.78
L/4	30.760	35.088	-59.441	67.60	0.00
3L/8	30.760	17.544	-93.783	99.54	0.00
L/2	30.760	0.000	-105.231	114.61	0.00

LATERAL (HIP. III)

Us1 (min.) = 59.60 Tn.

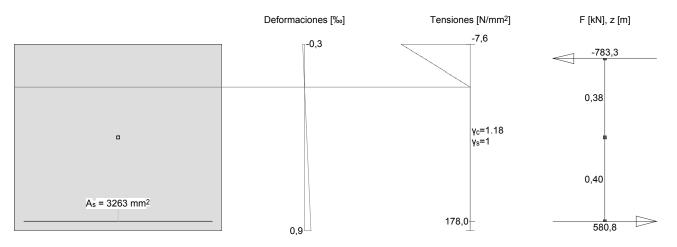
SECCION Nd		Vd Mc		Us1	Vsu
0 L/8 L/4 3L/8 L/2 5L/8 3L/4 7L/8	70.176 72.552 74.928 77.304 79.680 82.056 84.432 86.808	30.760 22.180 13.601 5.021 -3.559 -12.139 -20.719 -29.298	77.928 54.635 38.891 30.697 30.054 36.961 51.418 73.426	74.54 59.60 59.60 59.60 59.60 59.60 59.79	0.00 0.00 0.00 0.00 0.00 0.00 0.00
L	89.184	-37.878	102.984	104.99	6.27

SOLERA (HIP. III)

Us1 (min.) = 67.60 Tn.

SECCION	Nd	Vd	Md	Us1	Vsu
0	37.878	89.184	102.984	108.24	53.33
L/8	37.878	66.888	1.147	67.60	31.04
L/4	37.878	44.592	-71.594	67.60	8.74
3L/8	37.878	22.296	-115.238	124.62	0.00
L/2	37.878	0.000	-129.787	144.37	0.00

Valores Vsu aproximados de comprobación posterior


	PRESIÓN MEDI	IA SOBRE TERF	RENO = 1.20	KG/CM2
	CUANTÍAS MEC	CÁNICAS MÁXIM	MAS DEL MARCO	(Tn.)
DIMET	CIDEDIOD	70.00		35.22
- DINTEL	SUPERIOR INFERIOR		REPARTO	35.22
- LATERAL	INTERIOR	59.60	REPARTO	31.30
	EXTERIOR	104.99		31.30
- SOLERA	SUPERIOR	161.14	REPARTO	
	INFERIOR	108.24		35.22

PETRUCCO		Página 1
Secciones Berriz		31.03.18, 12:48
PyCe Ingenieros	LM	Fagus-5 - Version 1.10

Sección transversal L90, Variante 25a15: Análisis de tensiones dadas las fuerzas Nx=-202,4;My=533,7;

Escala 1:18,3

Verif. estado de tens. Viga-Sección: L90 , Variante: 25A15

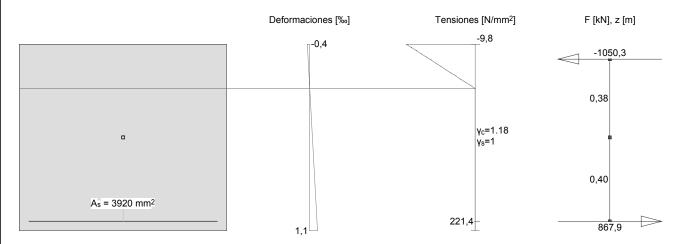
Fuerzas de la acción

No.	Parámetros de análisis	N [kN]	M _y [kNm]	M _z [kNm]	Observaciones
1	AP1: Estado de servicio	-202,4	533,7	0	

Parámetros de análisis "AP1: Estado de servicio", Código: Norma española EHE

	ID	σ-ε-Diagrama Límites de deformación			Tens.adm.	Factores de la resistencia			ncia	Otros valores							
		С	s	р	а	ε _{cu.c} [‰]	ε _{cu.b} [‰]	ε _{su} [‰]	σ _{s.adm} [N/mm²]	γ _c [-]	γ _s [-]	γ _p [-]	γ _a [-]	α [-]	φ [-]	P(t) [-]	κ
AP	1	1/0	1	1	1	-2,0	-3,5	10,0		1,00	1,00	1,00	1,00	45,00	0	t=o	-

Deformaciónes y tensiones extremas


•						
Nombre	Clase	y _q [m]	z _q [m]	ε [‰]	σ _d [N/mm²]	γ [-]
CS1	н300	0,50	0,45	-0,3	-7,6	1.18
CS1	н300	-0,50	-0,45	0,9	0	1.18
AL1	B500	-0,46	-0,41	0,8	178,0	1.00

	Nombre Coe	ficiente de homogeneiza	ción y _q [m]	Z _q [m]	σ _{elast} [N/mm²]
C	S1	1,00	0,50	0,45	-4,2
C	S1	1,00	-0,50	-0,45	3,7

PETRUCCO		Página 2
Secciones Berriz		31.03.18, 12:48
PyCe Ingenieros	LM	Fagus-5 - Version 1.10

Sección transversal L90, Variante 25a12,5: Análisis de tensiones dadas las fuerzas Nx=-182,3;My=749,4;

Escala 1:18,3

Verif. estado de tens. Viga-Sección: L90 , Variante: 25A12,5

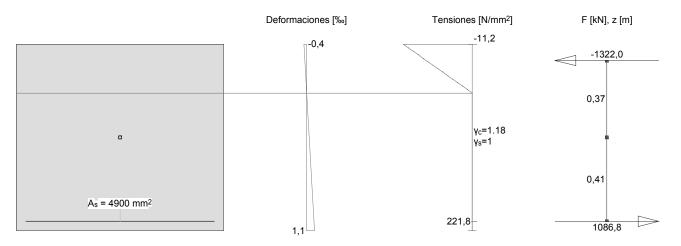
Fuerzas de la acción

No.	Parámetros de análisis	N [kN]	M _y [kNm]	M _z [kNm]	Observaciones
1	AP1: Estado de servicio	-182,3	749,4	0	

Parámetros de análisis "AP1: Estado de servicio", Código: Norma española EHE

	ID	σ-ε-Diagrama			na	Límite	Límites de deformación		Tens.adm.	Factores de la resistencia			Otros valores				
		С	s	р	а	ε _{cu.c} [‰]	ε _{cu.b} [‰]	ε _{su} [‰]	σ _{s.adm} [N/mm²]	γ _c [-]	γ _s [-]	γ _p [-]	γ _a [-]	α [-]	φ [-]	P(t) [-]	κ
AP	1	1/0	1	1	1	-2,0	-3,5	10,0		1,00	1,00	1,00	1,00	45,00	0	t=o	-

Deformaciónes y tensiones extremas


•						
Nombre	Clase	y _q [m]	z _q [m]	ε [‰]	σ _d [N/mm²]	γ [-]
CS1	н300	0,50	0,45	-0,4	-9,8	1.18
CS1	н300	-0,50	-0,45	1,1	0	1.18
AL3	B500	-0,46	-0,41	1,1	221,4	1.00

Nombre Coe	ficiente de homogeneiza	ción y _q [m]	Z _q [m]	σ _{elast} [N/mm²]
CS1	1,00	0,50	0,45	-5,8
CS1	1,00	-0,50	-0,45	5,3

PETRUCCO		Página 3
Secciones Berriz		31.03.18, 12:48
PyCe Ingenieros	LM	Fagus-5 - Version 1.10

Sección transversal L90, Variante 25a10: Análisis de tensiones dadas las fuerzas Nx=-235,1;My=931,4;

Escala 1:18,3

Verif. estado de tens. Viga-Sección: L90 , Variante: 25A10

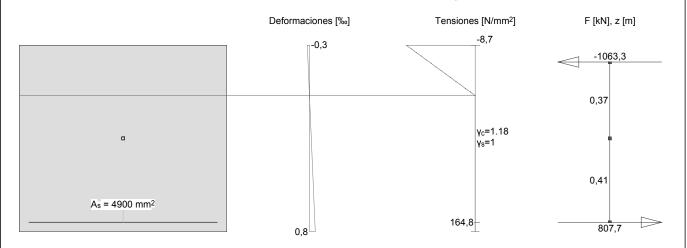
Fuerzas de la acción

No.	Parámetros de análisis	N [kN]	M _y [kNm]	M _z [kNm]	Observaciones
1	AP1: Estado de servicio	-235,1	931,4	0	

Parámetros de análisis "AP1: Estado de servicio", Código: Norma española EHE

	ID	σ-ε-Diagrama			na	Límite	Límites de deformación		Tens.adm.	Factores de la resistencia			Otros valores				
		С	s	р	а	ε _{cu.c} [‰]	ε _{cu.b} [‰]	ε _{su} [‰]	σ _{s.adm} [N/mm²]	γ _c [-]	γ _s [-]	γ _p [-]	γ _a [-]	α [-]	φ [-]	P(t) [-]	κ
AP	1	1/0	1	1	1	-2,0	-3,5	10,0		1,00	1,00	1,00	1,00	45,00	0	t=o	-

Deformaciónes y tensiones extremas


•						
Nombre	Clase	y _q [m]	z _q [m]	ε [‰]	σ _d [N/mm²]	γ [-]
CS1	н300	0,50	0,45	-0,4	-11,2	1.18
CS1	н300	-0,50	-0,45	1,1	0	1.18
AL2	B500	-0,46	-0,41	1,1	221,8	1.00

Nombr	e Coeficiente de homoger	neización y _q [m]	z _q [m]	σ _{elast} [N/mm²]
CS1	1,00	0,50	0,45	-7,2
CS1	1,00	-0,50	-0,45	6,6

PETRUCCO		Página 4
Secciones Berriz		31.03.18, 12:48
PyCe Ingenieros	LM	Fagus-5 - Version 1.10

Sección transversal L90, Variante 25a10: Análisis de tensiones dadas las fuerzas Nx=-255,2;My=719,3;

Escala 1:18,3

Verif. estado de tens. Viga-Sección: L90, Variante: 25A10

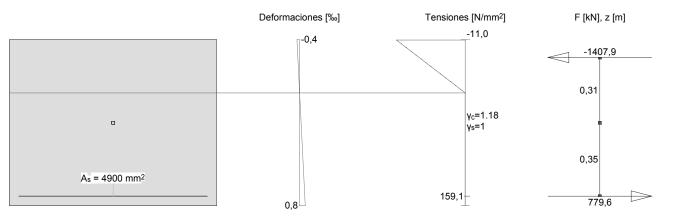
Fuerzas de la acción

No.	Parámetros de análisis	N [kN]	M _y [kNm]	M _z [kNm]	Observaciones
1	AP1: Estado de servicio	-255,2	719,3	0	

Parámetros de análisis "AP1: Estado de servicio", Código: Norma española EHE

ID	σ-ε-Diagrama		Diagrama Límites de deformación		Tens.adm.	Factores de la resistencia			Otros valores							
	С	s	р	а	ε _{cu.c} [‰]	ε _{cu.b} [‰]	ε _{su} [‰]	σ _{s.adm} [N/mm²]	γ _c [-]	γ _s [-]	γ _p [-]	γ _a [-]	α [-]	φ [-]	P(t) [-]	к
AP1	1/0	1	1	1	-2,0	-3,5	10,0		1,00	1,00	1,00	1,00	45,00	0	t=o	-

Deformaciónes y tensiones extremas


•						
Nombre	Clase	y _q [m]	z _q [m]	ε [‰]	σ _d [N/mm²]	γ [-]
CS1	н300	0,50	0,45	-0,3	-8,7	1.18
CS1	н300	-0,50	-0,45	0,8	0	1.18
AL2	B500	-0,46	-0,41	0,8	164,8	1.00

Tensión en sección homogénea (Material lineal)

	Nombre Coe	ficiente de homogeneiza	ción y _q [m]	Z _q [m]	σ _{elast} [N/mm²]
CS1		1,00	0,50	0,45	-5,6
CS1		1,00	-0,50	-0,45	5,0

Sección transversal L80, Variante 25a10: Análisis de tensiones dadas las fuerzas Nx=-628,0;My=719,3;

Escala 1:18,3

PETRUCCO		Página 5
Secciones Berriz		31.03.18, 12:48
PyCe Ingenieros	LM	Fagus-5 - Version 1.10

Verif. estado de tens. Viga-Sección: L80 , Variante: 25A10

Fuerzas de la acción

No.	Parámetros de análisis	N [kN]	M _y [kNm]	M _z [kNm]	Observaciones
1	AP1: Estado de servicio	-628,0	719,3	0	

Parámetros de análisis "AP1: Estado de servicio", Código: Norma española EHE

ID	σ-ε-Diagrama		ma	Límites de deformación		Tens.adm.	Factores de la resistencia			Otros valores			.			
	С	s	р	а	ε _{cu.c} [‰]	ε _{cu.b} [‰]	ε _{su} [‰]	σ _{s.adm} [N/mm²]	γ _c [-]	γ _s [-]	γ _p [-]	γ _a [-]	α [-]	φ [-]	P(t) [-]	κ
AP1	1/0	1	1	1	-2,0	-3,5	10,0		1,00	1,00	1,00	1,00	45,00	0	t=o	-

Deformaciónes y tensiones extremas

Nombre	Clase	y _q [m]	z _q [m]	ε [‰]	σ _d [N/mm²]	γ [-]
CS1	н300	0,50	0,40	-0,4	-11,0	1.18
CS1	н300	-0,50	-0,40	0,8	0	1.18
AL1	B500	-0,46	-0,35	0,8	159,1	1.00

	Nombre Coe	ficiente de homogeneiza	ción y _q [m]	z _q [m]	σ _{elast} [N/mm²]
CS1		1,00	0,50	0,40	-7,5
CS1		1,00	-0,50	-0,40	6,0

Flexion compuesta

OBRA: Berriz Tipo de ambiente: Ila + Qa

Elemento : HASTIAL Abertura maxima de fisura = 0,2 mm.

DATOS SECCION

Ancho seccion = 100 cm. E acero = 2100000 kp/cm2 I = 4266667 cm4

Canto seccion = 80 cm. As total = 49 cm2

Recubrimiento = 4,5 cm. Diametro maximo = 25 mm.

Fck = 300 kp/cm2 Separacion barras = 10 cm. < 15D

Fctm = 28,96 kp/cm2 fy = 5100 kp/cm2

TENSIONES

Momento de servicio = $71.93 \text{ m}^{+}\text{t}$ M/N = -114.54 cm.

Axil de servicio = -62,8 t

Tension armaduras (Estado II) = $\frac{1591 \text{ kp/cm}}{2}$ z = $\frac{66.94 \text{ cm}}{2}$

Momento inicio Estado II = $34,97 \text{ m}^*\text{t}$ Axil concom. inicio Estado II = -30,53 t

Tension armaduras inicio Estado II = 773,40 kp/cm2

SEPARACION MEDIA DE FISURAS

 $k1 = 0,125 \qquad (0,125 / 0,17 / 0,25)$

k2 = 0.5

Alargamiento medio de armaduras = 0,00066810

Canto sección eficaz recubrimiento = 20,0 cm. Ancho eficaz = 100 cm.

Ac eficaz = 2000 cm2

Separacion media de fisuras = 16,1020408 cm. Coeficiente beta = 1,50 (1,30 a 1,70)

Abertura caracteristica = 0,161368 mm. VALIDO

Flexion compuesta

OBRA: Berriz Tipo de ambiente: Ila + Qa

Elemento: DINTEL SUP, Abertura maxima de fisura = 0,2 mm.

DATOS SECCION

Ancho seccion = 100 cm. E acero = 2100000 kp/cm2 I = 6075000 cm4

Canto seccion = $\frac{90}{\text{cm}}$ As total = $\frac{32,63}{\text{cm}}$ cm2

Recubrimiento = 4,5 cm. Diametro maximo = 25 mm.

Fck = 300 kp/cm2 Separacion barras = 15 cm. < 15D

Fctm = 28,96 kp/cm2 fy = 5100 kp/cm2

TENSIONES

Momento de servicio = $53.37 \text{ m}^{+}\text{t}$ M/N = -263.69 cm.

Axil de servicio = -20,24 t

Tension armaduras (Estado II) = $\frac{1780 \text{ kp/cm}2}{2}$ z = $\frac{78.61 \text{ cm}}{2}$

Momento inicio Estado II = $41,46 \text{ m}^*\text{t}$ Axil concom. inicio Estado II = -15,72 t

Tension armaduras inicio Estado II = 1382,81 kp/cm2

SEPARACION MEDIA DE FISURAS

 $k1 = 0,125 \qquad (0,125 / 0,17 / 0,25)$

k2 = 0.5

Alargamiento medio de armaduras = 0,00059185

Canto sección eficaz recubrimiento = 22,5 cm. Ancho eficaz = 100 cm.

Ac eficaz = 2250 cm2

Separacion media de fisuras = 20,6193687 cm. Coeficiente beta = 1,50 (1,30 a 1,70)

Abertura caracteristica = 0,183053 mm. VALIDO

Flexion compuesta

OBRA: Berriz Tipo de ambiente: Ila + Qa

Elemento : SOLERA INF. Abertura maxima de fisura = 0,2 mm.

DATOS SECCION

Ancho seccion = 100 cm. E acero = 2100000 kp/cm2 I = 6075000 cm4

Canto seccion = $\frac{90}{cm}$ cm. As total = $\frac{49}{cm}$ cm2

Recubrimiento = 4,5 cm. Diametro maximo = 25 mm.

Fck = $\frac{300 \text{ kp/cm2}}{300 \text{ separacion barras}} = \frac{10 \text{ cm.}}{300 \text{ cm.}} < 15D$

Fctm = 28,96 kp/cm2 fy = 5100 kp/cm2

TENSIONES

Momento de servicio = $71.93 \text{ m}^{+}\text{t}$ M/N = -281.86 cm.

Axil de servicio = -25,52 t

Tension armaduras (Estado II) = $\frac{1648 \text{ kp/cm}}{2}$ z = $\frac{77.41 \text{ cm}}{2}$

Momento inicio Estado II = 41,30 m*t

Axil concom. inicio Estado II = -14,65 t

Tension armaduras inicio Estado II = 946,24 kp/cm2

SEPARACION MEDIA DE FISURAS

 $k1 = 0,125 \qquad (0,125 / 0,17 / 0,25)$

k2 = 0.5

Alargamiento medio de armaduras = 0,00065540

Canto sección eficaz recubrimiento = 22,5 cm. Ancho eficaz = 100 cm.

Ac eficaz = 2250 cm2

Separacion media de fisuras = 16,7397959 cm. Coeficiente beta = 1,50 (1,30 a 1,70)

Abertura caracteristica = 0,164570 mm. VALIDO

Flexion compuesta

OBRA: Berriz Tipo de ambiente :

Elemento: SOLERA SUP. Abertura maxima de fisura = 0,3 mm.

DATOS SECCION

Ancho seccion = 100 cm. E acero = 2100000 kp/cm2 I = 6075000 cm4

Canto seccion = 90 cm. As total = 49 cm2

Recubrimiento = 4,5 cm. Diametro maximo = 25 mm.

Fck = 300 kp/cm2 Separacion barras = 10 cm. < 15D

Fctm = 28,96 kp/cm2 fy = 5100 kp/cm2

TENSIONES

Momento de servicio = $93.14 \text{ m}^{+}\text{t}$ M/N = -396.17 cm.

Axil de servicio = -23,51 t

Tension armaduras (Estado II) = $\frac{2218 \text{ kp/cm}}{2218 \text{ kp/cm}}$ z = $\frac{77.66 \text{ cm}}{2218 \text{ kp/cm}}$

Momento inicio Estado II = 40,64 m*t

Axil concom. inicio Estado II = -10,26 t

Tension armaduras inicio Estado II = 967,81 kp/cm2

SEPARACION MEDIA DE FISURAS

 $k1 = 0,125 \qquad (0,125 / 0,17 / 0,25)$

k2 = 0.5

Alargamiento medio de armaduras = 0,00095564

Canto sección eficaz recubrimiento = 22,5 cm. Ancho eficaz = 100 cm.

Ac eficaz = 2250 cm2

Separacion media de fisuras = 16,7397959 cm. Coeficiente beta = 1,50 (1,30 a 1,70)

Abertura caracteristica = 0,239959 mm. VALIDO

Flexion compuesta

OBRA: Berriz Tipo de ambiente :

Elemento: DINTEL INF. Abertura maxima de fisura = 0,3 mm.

DATOS SECCION

Ancho seccion = 100 cm. E acero = 2100000 kp/cm2 I = 6075000 cm4

Canto seccion = 90 cm. As total = 39,2 cm2

Recubrimiento = 4,5 cm. Diametro maximo = 25 mm.

Fck = $\frac{300 \text{ kp/cm2}}{300 \text{ separacion barras}} = \frac{12,5 \text{ cm.}}{300 \text{ cm.}} < 15D$

Fctm = 28,96 kp/cm2 fy = 5100 kp/cm2

TENSIONES

Momento de servicio = $74.94 \text{ m}^{+}\text{t}$ M/N = -411.08 cm.

Axil de servicio = -18,23 t

Tension armaduras (Estado II) = $\frac{2214 \text{ kp/cm}2}{2214 \text{ kp/cm}2}$ z = $\frac{78.39 \text{ cm}}{2214 \text{ kp/cm}}$

Momento inicio Estado II = 40,58 m*t Axil concom. inicio Estado II = -9,87 t

Tension armaduras inicio Estado II = 1198,97 kp/cm2

SEPARACION MEDIA DE FISURAS

 $k1 = 0,125 \qquad (0,125 / 0,17 / 0,25)$

k2 = 0.5

Alargamiento medio de armaduras = 0,00089969

Canto sección eficaz recubrimiento = 22,5 cm. Ancho eficaz = 100 cm.

Ac eficaz = 2250 cm2

Separacion media de fisuras = 18,6747449 cm. Coeficiente beta = 1,50 (1,30 a 1,70)

Abertura caracteristica = 0,252023 mm. VALIDO

DIMENSIONAMIENTO CORTADURA SECCIONES RECTANGULARES EHE-08 Berriz **SOLERA** OBRA: Tipo SECCIÓN Canto = **0,90** m. Recubrimiento = 4,50 cm. Ancho = **1,00** m. d =0,855 m. **MATERIALES** Hormigón fck = **30** N/mm2 Coef.min.= 1,50 fyk =**510** N/mm2 Coef.min.= Acero 1,15 4900 mm2 Area armadura principal traccionada = **ACCIONES** Vrd = 891.80 KN 43.71728 0 Nd = -244,30 KN (tracción positiva) CORTANTE.-**COMPRESIÓN OBLICUA DEL ALMA** Caso $\cot \theta =$ 1.05 fcd =20,00 N/mm2 $\sigma'cd =$ -0,27 N/mm2 2 f1cd = 12,00 N/mm2 K= 1.01 5194.41 KN Vu1 = **VALIDO** fct.m = 2,90 N/mm2 TRACCIÓN EN ALMA $\sigma sd =$ 1,484 400 N/mm2 ξ = ρ1 = $0.00573 \beta =$ 1.000 0,770 m. z = A90/s =Vcu = 362,215 KN 17,205 cm2/m en la seccion **DIMENSIONAMIENTO.-**Diámetro de estribos = 12 mm. No ramas cortante = 6.6 Separación estribos = **0,3** m. Armadura total en seccion = 24,881 cm2/m **VALIDO**

Vrd/Vu1 =

0,1717

Separacion minima (44.2.3.4)

VALIDO

DIMENSIONAMIENTO CORTADURA SECCIONES RECTANGULARES EHE-08 Berriz **HASTIAL** OBRA: Tipo SECCIÓN Canto = **0,80** m. Recubrimiento = 4,50 cm. Ancho = **1,00** m. d =0,755 m. **MATERIALES** Hormigón fck = **30** N/mm2 Coef.min.= 1,50 fyk =**510** N/mm2 Coef.min.= Acero 1,15 4900 mm2 Area armadura principal traccionada = **ACCIONES** Vrd = 369.60 KN 43.20593 0 Nd = -309,40 KN (tracción positiva) CORTANTE.-**COMPRESIÓN OBLICUA DEL ALMA** Caso $\cot \theta =$ 1.06 fcd =20,00 N/mm2 $\sigma'cd =$ -0,39 N/mm2 2 f1cd = 12,00 N/mm2 K= 1.02 4608.55 KN Vu1 = **VALIDO** fct.m = 2,90 N/mm2 TRACCIÓN EN ALMA $\sigma sd =$ 1,515 400 N/mm2 ξ = ρ1 = 0,680 m. $0.00649 \beta =$ 1.000 z = A90/s =Vcu = 351,451 KN 0,668 cm2/m en la seccion **DIMENSIONAMIENTO.-**Diámetro de estribos = 8 mm. No ramas cortante = 6.6 Separación estribos = **0,3** m.

Armadura total en seccion = 11,058 cm2/m **VALIDO**

Separacion minima (44.2.3.4) Vrd/Vu1 =0,0802

VALIDO