

Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (hexaclorociclohexano)

Informe 2023

AZTI

TIPO DE DOCUMENTO: Informe Final.

TÍTULO DEL DOCUMENTO: Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (hexaclorociclohexano). Informe 2023

ELABORADO POR: AZTI

AUTORES: Joana Larreta y Oihana Solaun

FECHA: mayo 2024

Índice

Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (hexaclorociclohexano)

Informe 2023

1. .	Antecedentes	4
2.	Diseño del trabajo y metodología	6
	2.1. Estaciones de muestreo	6
	2.2. Métodos analíticos	8
	2.3. Normas de calidad ambiental	11
3.	Resultados y discusión	12
	3.1. Ejes principales y zona interior del estuario	
	3.2. Asua y su zona de influencia	
	3.3. Galindo y su zona de influencia	24
	3.4. Gobela v su zona de influencia	30
	3.5. Ballonti y su zona de influencia	35
	3.6. Nerbioi exterior y litoral del Ibaizabal	
4	Conclusiones	43

1.

Antecedentes

El proyecto denominado "Estudios de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano)" sobre el cual se redacta este informe, forma parte de los trabajos asociados al Convenio de Colaboración entre la Agencia Vasca del Agua y la Fundación AZTI Fundazioa suscrito con fecha 4 de enero de 2021 (Ref. interna de AZTI: IM-23-HCH).

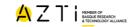
El estuario del Ibaizabal ha sido históricamente uno de los entornos más industrializados en la CAPV. Dentro de la actividad industrial llevada a cabo se encontraba la producción a gran escala de lindano (gamma-HCH) y sus congéneres de hexaclorociclohexano (HCH) en dos plantas de producción, una en Barakaldo y otra en Erandio, que estuvieron en activo hasta los años 80.

La mayor parte de los residuos de estas zonas fueron tratados en la planta construida a tal efecto en Barakaldo entre 1999 y 2001 (en el caso del HCH puro), o confinados en la celda de seguridad de Argalario construida entre 1999 y 2002 (en el caso de tierras contaminadas por HCH).

Estos potenciales focos de contaminación aparentemente no suponían un problema según la normativa vigente en aquel entonces (Directiva 84/491/CEE¹), en la que se describían tanto los requerimientos de vertido como las normas de calidad ambientales a cumplir.

Sin embargo, a raíz del cambio de normativa con respecto a las normas de calidad (Directiva 2008/105/CE²), los problemas medioambientales en agua se hicieron evidentes y surgió la necesidad de un seguimiento específico de HCH en el estuario del Ibaizabal y sus tributarios, según se establece en la Directiva Marco del Agua³.

Por ello, la Agencia Vasca del Agua (URA) puso en marcha dicho seguimiento en 2012, estudio que se ha llevado a cabo anualmente desde entonces (Larreta et al., 2013, 2015, 2017, 2018, 2019, 2020, 2021, 2022, 2023; URA, 2020).


El impacto respecto al estado químico ligado al HCH se ha señalado en la revisión para el tercer ciclo (2022-2027) del Plan Hidrológico de la Demarcación Hidrográfica del Cantábrico Oriental, aprobado por

4 Antecedentes

¹ Directiva 84/491/CEE del Consejo, de 9 de octubre de 1984, relativa a los valores límite y a los objetivos de calidad para los vertidos de hexaclorociclohexano.

² Directiva 2008/105/CE del Parlamento Europeo y del Consejo, de 16 de diciembre de 2008, relativa a las normas de calidad ambiental en el ámbito de la política de aguas, por la que se modifican y derogan ulteriormente las Directivas 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE y 86/280/CEE del Consejo, y por la que se modifica la Directiva 2000/60/CE.

³ Directiva 2000/60/CE, de 23 de octubre, por la que se establece el marco comunitario de actuación en el ámbito de la política de aguas

Real Decreto 35/2023⁴. En las masas de agua superficiales de las inmediaciones del estuario del Ibaizabal (masa de agua de transición Nerbioi Interior y Nerbioi Exterior, así como algunos de sus tributarios, Galindo-A, Asua-A y el tributario Ballonti-Triano), todas ellas afectadas por contaminación histórica de origen de depósito incontrolado y dispersión de residuos de fabricación de lindano, se han observado superaciones de las normas de calidad⁵ en la matriz agua para hexaclorociclohexano.

Por tanto, el objeto de este trabajo es determinar la evolución del grado de afección en aguas y sedimentos de la contaminación por isómeros de HCH en el entorno del estuario del Ibaizabal. Para ello, se han realizado muestreos específicos de aguas en determinados puntos de control para la determinación analítica de isómeros de HCH y se han recopilado resultados de otras fuentes de información.

Antecedentes

⁴ Real Decreto 35/2023, de 24 de enero, por el que se aprueba la revisión de los planes hidrológicos de las demarcaciones hidrográficas del Cantábrico Occidental, Guadalquivir, Ceuta, Melilla, Segura y Júcar, y de la parte española de las demarcaciones hidrográficas del Cantábrico Oriental, Miño-Sil, Duero, Tajo, Guadiana y Ebro.

⁵ Anexo IV del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental.

2.

Diseño del trabajo y metodología

2.1. ESTACIONES DE MUESTREO

La ubicación de las estaciones de muestreo de aguas se determinó a partir de la ubicación de posibles focos contaminantes de HCH en el entorno del estuario del Ibaizabal (Figura 1; para más información, véanse Tabla 4, Tabla 8, Tabla 13, Tabla 18, Tabla 23 y Tabla 26). Las muestras de sedimentos y biota evaluadas en este trabajo coinciden con algunos puntos de muestreo de aguas.

Dentro del marco de este proyecto (IM-23-HCH), en la campaña de 2023 se planteó la realización de muestreos bimestrales de HCH en aguas en ocho estaciones del estuario del Ibaizabal (IH-1, HCH-6, HCH-7, HCH-15, HCH-16, HCH-18, HCH-22 e IH-5), dando continuidad a los trabajos realizados desde 2014.

Complementariamente, en el ámbito de estudio del entorno de la masa de agua de transición del lbaizabal se dispone de información de varios proyectos (Figura 1) que se enmarcan en los programas de seguimiento requeridos por la Directiva Marco del Agua:

- "Red de seguimiento del estado ecológico de las aguas de transición y costeras de la Comunidad Autónoma del País Vasco" (RSEETyC), con 5 estaciones de control en aguas de transición y 2 en aguas costeras (litoral).
- "Red de seguimiento del estado químico de los ríos de la Comunidad Autónoma del País Vasco" (RSEQR); con 19 estaciones de control en ríos.
- Puntos para el control de investigación realizados dentro del proyecto RSEQR (Ctr. Inv. RSEQR) con 18 estaciones de control en ríos. Este control se planteó a finales de 2016 con el objeto de evaluar zonas sin control previo y así poder identificar focos de contaminación.

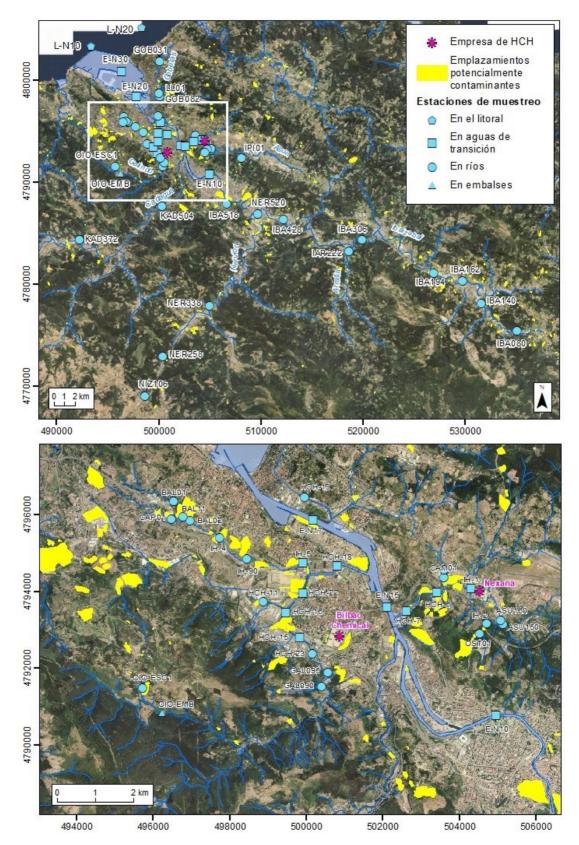


Figura 1 Localización de las estaciones de muestreo de aguas en las inmediaciones del estuario del Ibaizabal, entre 2014 y 2023, y de los emplazamientos potencialmente contaminantes incluidos por IHOBE en el inventario de suelos que soportan o han soportado actividades o instalaciones potencialmente contaminantes del suelo en la zona del bajo Ibaizabal (fuente: IHOBE, 2016). Se indica también la localización de los terrenos en los que se situaban las empresas Bilbao Chemical y Nexana S.A., fabricantes de HCH entre 1947 y 1987.

2.2. MÉTODOS ANALÍTICOS

2.2.1. Aguas

En las muestras de agua (fracción total) se analizan los cinco congéneres del hexaclorociclohexano (α -HCH, β -HCH, δ -HCH, ϵ -HCH y γ -HCH), a excepción de las muestras del proyecto RSEQR en las que no se analiza el congénere ϵ -HCH. Las determinaciones analíticas de las aguas se han realizado en laboratorios acreditados por la Entidad Nacional de Acreditación (ENAC):

- Las muestras de aguas de los muestreos bimestrales específicas de este proyecto (IM-23-HCH) y las del proyecto RSEETyC (a partir de 2017) han sido analizadas por IPROMA (laboratorio acreditado por la ENAC, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 (CGA-ENAC-LEC), Acreditación nº 103/LE268) (Tabla 1).
- Las muestras del proyecto RSEETyC han sido analizadas en los laboratorios de LABAQUA hasta 2016 (laboratorio acreditado por la ENAC, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 (CGA-ENAC-LEC), Acreditación nº 109/LE446) (Tabla 1).
- Las muestras del proyecto RSEQR han sido analizadas por los Laboratorios Tecnológicos de Levante hasta junio de 2019 (laboratorio acreditado por la ENAC, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 (CGA-ENAC-LEC), Acreditación nº 121/LE1783). Las muestras de las campañas de este proyecto desde agosto de 2019 han sido analizadas en los laboratorios de LABAQUA (laboratorio acreditado por la ENAC, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 (CGA-ENAC-LEC), Acreditación nº 109/LE446) (Tabla 1).

El procedimiento analítico utilizado por el laboratorio de IPROMA para la determinación de HCH en la matriz agua consiste en la extracción con barras agitadoras recubiertas de PDMS (polidimetil-siloxano), llamadas *Twisters*, y posterior desorción térmica de las mismas, seguida del análisis por cromatografía de gases con detección de espectrometría de masas-masas con triple cuádruplo. La metodología utilizada se detalla a continuación:

- El procedimiento de extracción consiste en hacer girar el Twister recubierto de PDMS en la muestra durante unas horas. Los analitos de interés entran en contacto con la fase de desorción PDMS y son extraídos de la fase acuosa. Sin preparación de muestra adicional, el Twister se sitúa en el equipo de desorción térmica TDU. Aquí, los analitos se desorben térmicamente, se focalizan en el inyector y se transfieren a la columna capilar del GC.
- La detección y cuantificación se realiza por espectrometría de masas/masas con las transiciones específicas para cada compuesto. En el primer cuádruplo (Q1) se aísla al ion precursor, este es un fragmento de la molécula del compuesto. En el segundo cuádruplo (Q2), o celda de colisión, se produce la ruptura del ion precursor, bajo unas condiciones optimizadas previamente, obteniendo un fragmento de menor masa/carga denominado ion producto y detectado en el tercer cuádruplo (Q3). Estos pares ion precursor-ion producto se denominan transiciones.
- Esta técnica permite eliminar interferencias de la matriz y confirmar con total seguridad el compuesto que se está analizando.

El procedimiento analítico utilizado por LABAQUA para la determinación de HCH en la matriz agua se detalla a continuación:

- Se realiza una extracción previa de la muestra mediante la técnica SBSE (Stir Bar Sorptive Extraction) que consiste en una barra de agitación magnética recubierta de un polímero especial (polidimetilsiloxanos-PDMS). Para ello, una barra-imán recubierta del adsorbente se introduce en la muestra, a la que previamente se le han añadido patrones internos para el control del proceso, y se agita durante 12 horas hasta que todo el analito ha quedado retenido en el adsorbente.
- Posteriormente, esta barra-imán con el adsorbente es retirada de la muestra y secada con un papel especial, papel desecante Afora-Ultrainerte.
- La barra-imán es introducida directamente en el sistema cromatográfico (sistema de desorción térmica TDU-GERSTEL con unidad de crioenfoque CIS-4 acoplado a cromatógrafo de gases Agilent 5975B con detección por espectrómetro de masas modelo Agilent 6890N), donde es analizada mediante desorción térmica acoplada a cromatografía de gases con detección por espectrometría de masas.

El procedimiento analítico utilizado por Laboratorios Tecnológicos de Levante (LTL) para la determinación de HCH en la matriz agua se detalla a continuación:

- Los pesticidas presentes en el agua se adsorben sobre el polidimetilsiloxano (PDMS) que recubre unas barras agitadoras, estableciéndose un equilibrio entre los analitos en la fase acuosa y los analitos adsorbidos en el PDMS.
- Para cada analito, este equilibrio viene determinado por su constante de partición octanol-agua (Kow). Una vez adsorbidos los analitos, se realiza una desorción térmica de los mismos, introduciéndolos en el cromatógrafo de gases equipado con un detector de espectrometría de masas (triple cuadrupolo).
- El análisis de las muestras se realiza mediante la técnica de cromatografía de gasesespectrometría de masas.

El límite de cuantificación de los laboratorios de IPROMA, acreditado por la ENAC, es de 0,0005 μ g l⁻¹ para cada congénere. Todos los congéneres se analizan bajo métodos acreditados menos el ϵ -HCH, para el que en su defecto se da el mejor límite de cuantificación posible (Tabla 1).

El límite de cuantificación de los laboratorios de LABAQUA es de 0,001 μ g l⁻¹ para cada congénere, acreditado por la ENAC. Todos los congéneres se analizan bajo métodos acreditados menos el ϵ -HCH, para el que en su defecto se da el mejor límite de cuantificación posible (Tabla 1).

El límite de cuantificación de Laboratorios Tecnológicos de Levante, acreditado por la ENAC, es de $0.01~\mu g \, l^{-1}$ para cada congénere. Todos los congéneres se analizan bajo métodos acreditados (excepto el ϵ -HCH, que no es analizado) (Tabla 1).

Tabla 1 Resumen de laboratorios que han realizado las determinaciones bajo métodos acreditados, programa de seguimiento, categorías de aguas, periodos y límites de cuantificación

Laboratorio	Proyecto	Categoría	Periodo	LC (µg l ⁻¹)
	IM-23-HCH	Aguas continentales	2014-2020	
IPROMA	\ 1101-25-11011	Otras aguas superficiales	2014-2023	0,0005
	RSEETyC	Otras aguas superficiales	2017-2023	
	RSEETyC	Otras aguas superficiales	2012-2016	
LABAQUA	RSEQR-INV	Otras aguas superficiales y aguas continentales	2019-2023	0,0010
	RSEQR	Aguas continentales	2019-2023	
LTL	RSEQR-INV	Otras aguas superficiales y Aguas continentales	2016-2019	0,010

2.2.2. Sedimentos

En las muestras de sedimento, como en las de agua, las determinaciones analíticas se han realizado en laboratorios acreditados por la ENAC.

- Las muestras de sedimento del proyecto RSEETyC han sido analizadas por IPROMA (laboratorio acreditado por la ENAC, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 (CGA-ENAC-LEC), Acreditación nº 103/LE268).
- Los sedimentos del proyecto RSEQR han sido analizadas por LABAQUA (laboratorio acreditado por la ENAC, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 (CGA-ENAC-LEC), Acreditación nº 109/LE446).

El procedimiento analítico utilizado por el laboratorio de IPROMA para la determinación de HCH en sedimento consiste en la extracción sólido-líquido, con proceso de *clean-up* (purificación de la muestra) de los compuestos a determinar y la determinación se realiza con cromatografía de gases y detección de captura de electrones (GC-ECD). Se detalla a continuación:

- La muestra seca se extrae en acetona con 15 minutos de agitación magnética o 30 s de Ultra-Turrax (dispersión de alto rendimiento).
- A continuación, se le añade diclorometano y éter etílico al mismo volumen, aplicando nuevamente el mismo procedimiento de extracción.
- La mezcla obtenida se centrifuga y se recoge la parte orgánica sobrenadante llevándola a sequedad en un rotavapor con una temperatura entre 40 y 60°C.
- La muestra se redisuelve en diclorometano y el extracto se purifica mediante cromatografía de permeabilidad en gel (GPC) donde se recoge el extracto correspondiente.
- La muestrea se lleva a sequedad con un rotavapor.
- Se recoge la muestra con diclorometano, se vuelve a evaporar y a redisolver en 0,5 ml de hexano.
- Esta muestra se limpia en una columna de florosil, de la que se extrae la muestra preconcentrada con una mezcla de diclorometano /hexano (en proporción 30:70 en volumen), se lleva a sequedad y se recoge nuevamente con diclorometano.
- Se vuelve a llevar a sequedad y se redisuelve en isooctano.
- La muestra se determina con un cromatógrafo de gases acoplado a un detector de captura de electrones, GC-ECD.

El procedimiento analítico utilizado por LABAQUA para la determinación de HCH en sedimento se detalla a continuación:

- Extracción de orgánicos. Esta etapa se realiza mediante una extracción con mezcla de disolventes (acetona:hexano 1:1 v/v) y ultrasonidos. Previamente a la extracción se le añade a la muestra una serie de patrones internos para controlar el rendimiento del proceso.
- Limpieza del extracto. Una vez obtenido el extracto con los compuestos orgánicos, este es

pasado por una serie de absorbentes para eliminar interferentes cromatográficos.

- Etapa de concentración. El extracto limpio es concentrado mediante evaporación del disolvente (la mezcla hexano: acetona) hasta un volumen conocido.
- Etapa de análisis. Por último, el extracto es analizado mediante cromatografía de gases (utilizando un cromatógrafo de gases modelo Agilent 7890a con espectrómetro de masas de triple cuadrupolo Agilent 700) y espectrometría de masas con triple cuadrupolo.

2.3. NORMAS DE CALIDAD AMBIENTAL

Según el Real Decreto 817/2015⁶, el estado químico de las aguas superficiales se clasificará como «bueno» o «no alcanza el buen estado».

Una masa de agua superficial se encuentra en buen estado químico cuando se cumplen las Normas de Calidad Ambiental (NCA) establecidas en el anexo IV del mencionado Real Decreto, así como otras normas comunitarias pertinentes que fijen NCA. El estado químico corresponde a la clasificación peor de cada una de las sustancias del anexo IV.

En la Tabla 2 se recogen las normas de calidad ambiental (NCA) establecidas para hexaclorociclohexano en el Real Decreto 817/2015.

Tabla 2 Normas de calidad ambiental establecidas en el Real Decreto 817/2015 para hexaclorociclohexano. Norma de calidad ambiental expresada como Concentración Máxima Admisible (NCA-CMA) o como Media Anual (NCA-MA)

		NCA-MA	NCA-CMA
Have also as sials become (v. a. b-1)	Otras aguas superficiales	0,002	0,02
Hexaclorociclohexano (µg l⁻¹)	Aguas superficiales continentales	0,02	0,04

En el anexo IV Apartado B. Aplicación de las normas de calidad ambiental establecidas en el apartado A se indica que en una masa de agua superficial se cumplen las Normas de Calidad Ambiental expresado como Media Anual (NCA-MA) cuando la media aritmética de las concentraciones medidas distintas veces durante el año, en cada punto de control representativo de la masa de agua, no excede de la norma.

Asimismo, se indica que se considera que una masa de agua superficial cumple las Normas de Calidad Ambiental expresado como Concentración Máxima Admisible (NCA-CMA) cuando la concentración medida en cualquier punto de control representativo de la masa de agua no supera la norma.

Por tanto, cuando en todos los puntos de control de una masa de agua se cumplen con las NCA, se determina que el estado químico de dicha masa de agua es «bueno»; y cuando al menos una sustancia no cumple en algún punto, la masa de agua «no alcanza el buen estado químico» (Tabla 3).

Tabla 3 Estado químico. Denominación y asignación de colores.

Clase del estado químico	Color en planos y tablas	
Buen estado químico	Azul	Cumple NCA
No alcanza el buen estado químico	Rojo	No cumple NCA

11

⁶ Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental

Resultados y discusión

En este apartado se presentan los resultados obtenidos desde 2014 hasta 2023 en aguas, sedimentos y biota en toda el área del estuario del Ibaizabal, pertenecientes a diferentes estudios que se están realizando para la Agencia Vasca del Agua (URA), como RSEETyC y RSEQR. Además, se muestran los resultados del control de investigación de RSEETyC (IM-23-HCH), junto con una discusión de estos, e intentando relacionar las posibles causas de presencia de HCH.

Los resultados se presentan iniciando en la parte más interna del estuario (correspondiente a la zona interior de estuario y al eje principal), seguida de los ámbitos de estudio situados en la margen izquierda (Galindo y Ballonti) y derecha (Asua y Gobela) del estuario, y finalizando con los puntos más exteriores del estuario, situados en el eje principal y litoral del estuario.

3.1. EJES PRINCIPALES Y ZONA INTERIOR DEL ESTUARIO

La localización de las <u>estaciones de muestreo</u> de aguas consideradas en la zona de influencia de los ejes principales y de la parte más interior del estuario se presenta en la Figura 2 y Tabla 4. Se corresponden con un total de 14 estaciones asociadas a ríos (ríos Ibaizabal, Arratia, Elorrio, Nerbioi, Izoria y Kadagua), y una estación de la masa de agua de transición Nerbioi Interior.

Tabla 4 Estaciones de muestreo de aguas. Ejes principales y zona interior del estuario.* Estaciones en las que también se ha realizado muestreo de sedimentos en el periodo de estudio.** Estaciones en las que tambien se ha realizado muestreo de biota en el periodo de estudio.

Zona	Categoría	Masa de agua	Estación	UTMX ETRS89	UTMY ETRS89	Proyecto	
		Río Elorrio I	IBA080	535038	4775387		
		Río Elorrio II	IBA140	531519	4778081		
		Río Ibaizabal I	IBA162	529711	4780310		
	Ríos	Río Ibaizabal II	IBA194*	526924	4781082	RSEQR	
Ibaizabal	Rios	Río Ibaizabal III	IBA306**	519929	4784362	KSEUK	
		Río Arratia	IAR222	518564	4783162		
		Río Nervión II	IBA428*,**	512219	4786317		
		RIO NEI VIOIT II	IBA518**	506656	4787817		
	Aguas de transición Nerbioi Interior Trans		E-N10*	504948	4790762	RSEETyC	
		Río Izoria	NIZ106	498628	4768994		
Nerbioi	Ríos	Río Nervión I	NER258*,**	500389	4772872		
Nerbioi	1/105	Río Nervión II	NER338	504919	4777832	RSEQR	
		Rio Nerviori II	NER520*	509669	4786877	RSEQR	
Kadagua	Ríos	Río Kadagua II	KAD372	492219	4784327		
Nauagua	INIOS	Río Kadagua IV	KAD504*,**	500284	4787637		

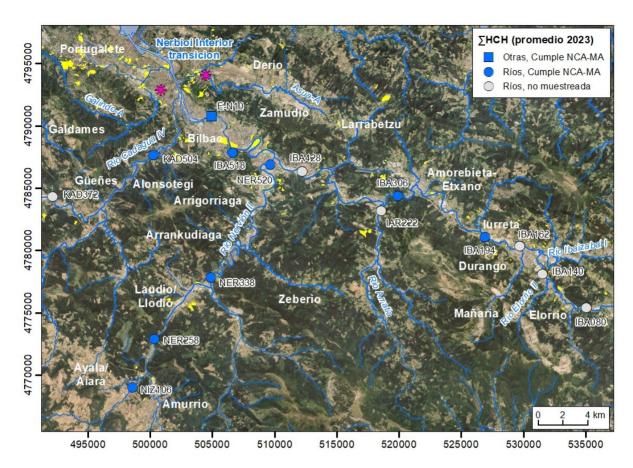


Figura 2 Cumplimiento de la norma de calidad ambiental (NCA-MA: media anual) en aguas del ámbito de Ejes principales y zona interior del estuario, en 2023. Cuadrados: otras aguas superficiales (costera y de transición); círculos: aguas superficiales continentales (ríos). Se indica también la localización de emplazamientos potencialmente contaminantes y de los terrenos en los que se situaban las empresas fabricante de HCH entre 1947 y 1987 (ver Figura 1).

Los resultados obtenidos en la matriz <u>agua</u> en los muestreos de 2023 en las estaciones del ámbito Ejes principales y zona interior del estuario se presentan en el Anexo (Tabla A1, A2 y A3). Este año 2023 se cumplen las NCA establecidas en todas las estaciones consideradas (Figura 2 y Tabla 5).

En la Tabla 5 se presenta, para el periodo 2014-2023, la evolución anual del cumplimiento de las normas de calidad establecidas para HCH (Tabla 2).

En el periodo 2014-2023, se cumplen, en general, las NCA de Σ HCH en agua en el ámbito Ejes principales y zona interior del estuario, al presentarse concentraciones por debajo del límite de cuantificación en la mayoría de los casos (Tabla 5).

En este grupo de estaciones de control destaca la estación E-N10, que no alcanzaba el buen estado químico para HCH entre 2017 y 2020.

Desde 2021, tanto el eje principal como la zona interior del estuario alcanzan el buen estado químico para HCH.

Tabla 5 Evolución del cumplimiento de las normas de calidad ambiental (NCA) de ΣHCH (μg l-¹) entre 2014 y 2023, en las aguas muestreadas en el ámbito Ejes principales y zona interior del estuario. Se presenta el valor medio (promedio; MA) y máximo anual (máximo; CMA) junto al número de muestras disponibles para cada año. Para el sumatorio de los congéneres (∑HCH), aquellos valores inferiores al límite de cuantificación (LC) se han considerado 0. Ver límites de cuantificación en página 9. C: cumple, NC: no cumple.

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
J = 1.1.2 g = 1.14			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>C</td></lc<>	С	C
			2016	8	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
	Río Elorrio I	IBA080	2017	8	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>C</td></lc<>	С	C
			2021	1	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	D/ El : II	ID 4 4 40	2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Elorrio II	IBA140	2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Ibaizabal I	IBA162	2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	THO IDAIZADAI I		2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2021	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2014	8	0,0012	0,0058	С	С
			2015	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Ibaizabal II	IBA194	2018	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	i vio inalzanal II	10/134	2019	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	10	0,0030	0,0260	С	С
			2021	12	0,0022	0,0240	С	С
			2022	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2023	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Ríos	Río Ibaizabal III	IBA306	2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2019	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	10	0,0007	0,0043	С	С
			2021	12	0,0007	0,0057	С	С
			2022	12	0,0002	0,0014	С	С
			2023	12	0,0001	0,0014	С	С
			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Arratia	IAR222	2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	r tio 7 tiratia	, u (LLL	2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2015	7	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	12	0,0009	0,0112	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		IBA428	2018	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2019		<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	11	0,0016	0,0151	С	С
	Río Nervión II		2021	12	0,0006	0,0053	С	С
			2022	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		IBA518	2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2022	11	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2023	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2014	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Ni-ulatat / Ni - 17		2015		<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Aguas de	Nerbioi / Nervión	E-N10	2016		<lc< td=""><td><lc< td=""><td>C</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>С</td></lc<>	C	С
transición	Interior Transición		2017	1	0,0043	0,0043	NC NC	С
			2018		0,0045	0,0045	NC	С
			2019	1	0,0070	0,0070	NC	С

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
	_		2020	1	0,0038	0,0038	NC	С
			2021	4	0,0010	0,0031	С	С
			2022	8	0,0006	0,0036	С	С
			2023	8	0,0013	0,0034	С	С
			2015	5	0,0025	0,0125	С	С
			2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Izoria	NIZ106	2019	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	11	0,0006	0,0051	С	С
			2021	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2022	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2023	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2014	8	0,0019	0,0072	С	С
			2015	8	0,0015	0,0122	С	С
			2016		0,0027	0,0318	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Nervión I	NER258	2018	12	0,0035	0,0296	С	С
	THO NEIVIOITI	INLINES	2019	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	11	0,0004	0,0034	С	С
Ríos			2021	12	0,0011	0,0080	С	С
11105			2022	12	0,0014	0,0081	С	С
			2023	12	0,0003	0,0020	С	С
		NER338	2015		<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2023	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2014	12	0,0012	0,0106	С	С
			2015	9	0,0003	0,0026	С	С
	Río Nervión II		2016		<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		NER520	2018	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2019	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	11	0,0001	0,0015	С	С
			2021	12	0,0004	0,0034	С	С
			2022	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2023	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2015	5	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Kadagua II	KAD372	2016		<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2014		0,0004	0,0031	С	С
			2015		0,0012	0,0104	С	С
Ríos			2016		<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Río Kadagua IV	KAD504	2018	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2019	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	11	0,0001	0,0015	С	С
			2021	12	<lc< td=""><td><lc< td=""><td>C</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>С</td></lc<>	C	С
			2022		<lc< td=""><td><lc <lc< td=""><td>С</td><td>С</td></lc<></lc </td></lc<>	<lc <lc< td=""><td>С</td><td>С</td></lc<></lc 	С	С
		L	2023	12	<lc< td=""><td><lu< td=""><td>С</td><td>С</td></lu<></td></lc<>	<lu< td=""><td>С</td><td>С</td></lu<>	С	С

En el ámbito Ejes principales y zona interior del estuario también se dispone de datos de concentración de HCH en sedimentos, aunque no todas las estaciones se han muestreado con la misma periodicidad y no todos los años se han analizado los mismos congéneres de HCH (Tabla 6). Los resultados obtenidos en sedimento en los muestreos de 2023 se presentan en el Anexo (Tabla A10).

Las concentraciones de isómeros de HCH en sedimentos no superan los límites de cuantificación correspondientes, a excepción de la estación E-N10 (masa Nerbioi Interior Transición), en la que se

superan dichos límites en un 47% de las muestras recogidas entre 1995 y 2023 (Tabla 6). Entre los años 2017 y 2023 en la estación E-N10 los resultados de HCH en sedimento son inferiores al límite de cuantificación, lo cual contrasta con la matriz agua, en la que se supera la NCA-MA entre 2017 y 2020.

En esta estación (E-N10), el rango de concentración en sedimento en este periodo (1995-2023) es de $0,1-7,46~\mu g~kg^{-1}$ para el γ -HCH y de $0,1-1,80~\mu g~kg^{-1}$ para el α -HCH; las concentraciones del resto de congéneres están por debajo de límite de cuantificación.

Tabla 6 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en las estaciones del ámbito Ejes principales y zona interior del estuario⁷.

Zona	Estación	nº muestras (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
	E-N10	32 muestras (1995-2023)	1995-2016: α, γ 2017-2023: α, β, δ, ε, γ	17 (53%)
Ibaizabal	IBA194	4 muestras (2002, 2015-2017)	α, β, δ, γ	4 (100%)
	IBA 428	7 muestras (2002, 2015-2017,2019-2021)	α, β, δ, γ	7 (100%)
Morbioi	NER258	16 muestras (2007-2017,2019-2023)	2007: α, β, δ, ε, γ 2008-2017,2019-2023: α, β, δ, γ	16 (100%)
Nerbioi	NER520	17 muestras (2002, 2007-2017,2019-2023)	2007: α, β, δ, ε, γ 2002, 2008-2017,2019-2023: α, β, δ, γ	17 (100%)
Kadagua	KAD504	19 muestras (2004-2017,2019-2023)	2004-2007 y 2023: α, β, δ, ε, γ 2008-2017,2019-2022: α, β, δ, γ	19 (100%)

En el ámbito Ejes principales y zona interior del estuario también se dispone de datos de concentración de HCH en <u>biota</u> (*Anguilla anguilla; Luciobarbus graellsii; Chelon labrosus; Parachondrostoma miegii; Salmo trutta fario*), aunque no todas las estaciones se han muestreado con la misma periodicidad y no todos los años se han analizado los mismos congéneres de HCH (Tabla 8). Los resultados obtenidos en biota en los muestreos de 2023 se presentan en el Anexo (Tabla A11).

Tabla 7 Resumen de los datos de ΣHCH disponibles en la biota muestreada en las estaciones del ámbito Ejes principales y zona interior del estuario⁷.

Zona	Estación	nº muestras (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
Ibaizabal	IBA306	2 muestras (2002 y 2023)	2002: α, β, δ, γ 2023: α, β, δ, γ, ε	1 (50%)
	IBA428	7 muestras (2002;2015-2021)	2002;2015-2021: α, β, δ, γ	6 (86%)
Ibaizabal	IBA518	1 muestras (2022)	2022: α, β, δ, ε, γ	1 (100%)
	NER338	4 muestras (2003-2006)	2003-2006: α, β, δ, ε, γ	4 (100%)
	NER520	18 muestras (2002;2007-2023)	2007, 2022 y 2023: α, β, δ, ε, γ 2008-2021: α, β, δ, γ	17 (94%)
Nerbioi	NER258	18 muestras (2002;2007-2023)	2002; 2008 - 2021: α, β, δ, γ 2007-2023: α, β, δ, ε, γ	18 (100%)
Kadagua	KAD504	20 muestras (2002;2004-2021 y 2023)	2002; 2008 - 2021: α, β, δ, γ 2004-2007 y 2023: α, β, δ, ε, γ	19 (95%)

Las concentraciones de isómeros de HCH en biota no superan los límites de cuantificación correspondientes, excepto de manera puntual, en la única muestra recogida en IBA306 en el 2002, en IBA428 y NER520 en 2002, y en KAD504 en 2021.

El rango de concentración de ΣHCH en biota en el periodo 2002-2023 en IBA428 es de 2-53,6 μg kg⁻¹ PF (2-12,8 μg kg⁻¹ PF para α -HCH y 2-40,8 μg kg⁻¹ PF para δ -HCH), en el NER520 es de 2-3,63 μg kg⁻¹ PF de γ -HCH, y en KAD504 es de 2-11,3 μg kg⁻¹ PF de α -HCH. El resto de los resultados en biota son inferiores al límite de cuantificación, siendo acordes a los resultados obtenidos en esta zona de estudio.

⁷ Para cada una de las estaciones se indica el número de muestras, los años en los que se ha muestreado, los congéneres analizados y el número datos de HCH que son inferiores al límite de cuantificación (LC) correspondiente.

3.2. ASUA Y SU ZONA DE INFLUENCIA

La localización de las <u>estaciones de muestreo</u> de aguas consideradas en la zona del Asua y su zona de influencia se presenta en la Figura 3 y en la Tabla 8. Son un total de siete estaciones asociadas al río Asua y otras áreas de drenaje, y cuatro estaciones de la masa de agua de transición Nerbioi Interior.

Tabla 8 Estaciones de muestreo de aguas. Asua y su zona de influencia. * Estaciones en las que también se ha realizado muestreo de sedimentos en el periodo de estudio (2014-2023). ** Estaciones en las que tambien se ha realizado muestreo de biota en el periodo de estudio.

Zona	Categoría	Masa de agua	Estación	UTMX ETRS89	UTMY ETRS89	Proyecto	
			IPI01	508080	4792373		
			ASU150	505140	4793138	Ctr. Inv. DCEOD	
		Asua-A	OST01	504525	4792902	Ctr. Inv. RSEQR	
	Ríos	Ríos Ibaizabal drenaje transición	IH-2	504699	4793156		
			ASU160*,**	505069	4793252	RSEQR	
Asua			CAM01_MOD	503586	4794575	Ctr. Inv. RSEQR	
			CAM01	503598	4794370	CII. IIIV. NOEQN	
			IH-1	504298	4794080	IM23HCH	
	Aguas de	Aguas de Nerbioi Interior Transición	HCH-6	503415	4793975	Ctr. Inv. RSEQR	
	transición	Neibioi iiileiioi Transicion	HCH-7	502616	4793480	CII. IIIV. KOEQK	
			E-N15*	502111	4793583	RSEETyC	

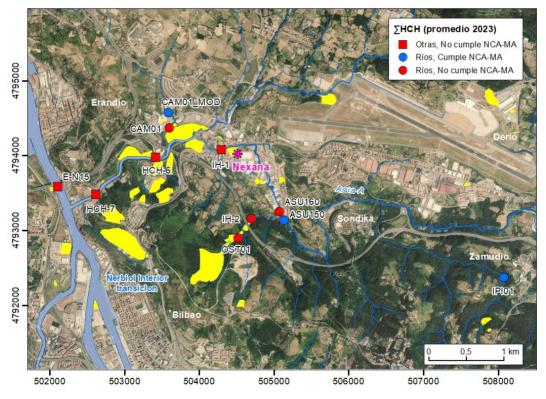


Figura 3 Asua y su zona de influencia. Cumplimiento de la norma de calidad ambiental (NCA-MA: media anual) en aguas en 2023 para ΣHCH. Cuadrados: otras aguas superficiales (costera y de transición); círculos: aguas superficiales continentales (ríos). Se indica en amarillo la localización de emplazamientos potencialmente contaminantes y de los terrenos en los que se situaba la empresa Nexana S.A., fabricante de HCH entre 1952 y 1982.

Los resultados obtenidos en la matriz <u>aqua,</u> en los muestreos de 2023 en el ámbito Asua y su zona de influencia se presentan en el Anexo (Tabla A4). Las aguas de transición o drenaje a aguas de transición no alcanzan el buen estado químico, puesto que superan las NCA establecidas, excepto la estación CAM01_MOD que alcanza el buen estado químico (Figura 3). Por su parte, las estaciones asociadas a ríos no alcanzan el buen estado químico en 2023, excepto las estaciones IPI01 y ASU150 que

presentan buen estado químico a lo largo del estudio y también en 2023.

En la Tabla 9 se presenta, para el periodo 2014-2023, la evolución anual del cumplimiento de las normas de calidad establecidas para el ΣHCH (Tabla 2). En el periodo 2014-2023, en la zona del Asua, las estaciones de aguas continentales superficiales (ríos) de la parte alta de la cuenca (IPI01 y ASU150) cumplen con las NCA de ΣHCH en agua durante todo el periodo de estudio.

Por su parte, en la estación ASU160 se incumple la NCA-CMA de ΣHCH en agua en varias anualidades (2015, 2016 y 2020-2023), probablemente por su proximidad a la incorporación del arroyo Enekoena, en el que se muestrean las estaciones IH-2 (que no cumple las NCA desde el inicio del estudio) y OST01 (que no cumplen con las NCA de 2017 a 2023). En las inmediaciones de estas dos estaciones (IH-2 y OST01) se han inventariado varios vertederos considerados como emplazamientos potencialmente contaminantes (Antiguo vertedero de Bilbao, Artxanda) y también se sitúa el vertedero pozo Sangroniz (Figura 3).

Aguas abajo de la estación ASU160, la mayoría de las estaciones de aguas de transición o drenaje a aguas de transición no alcanzan el buen estado químico, puesto que superan las NCA de ΣHCH en agua (Tabla 9 y Figura 3), excepto E-N15 en 2015. Por otro lado, la estación CAM01-MOD, que se sitúa aguas arriba de CAM-01 y de posibles emplazamientos potencialmente contaminados, también cumple entre 2017 y 2023.

Tabla 9 Evolución del cumplimiento de las normas de calidad ambiental (NCA) de ΣHCH (μg l⁻¹) entre 2014 y 2023, en las aguas muestreadas en las estaciones del Asua y su zona de influencia. Se presenta el valor medio anual (MA) y el máximo anual (CMA) junto al número de muestras disponibles para cada año. Para el sumatorio de los congéneres (∑HCH), aquellos valores inferiores al límite de cuantificación (LC) se han considerado 0. Ver límites de cuantificación en página 9. C: cumple, NC: no cumple.

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
			2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	4	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		IPI01	2019	5	0,0010	0,0052	С	С
		IFIUI	2020	4	0,0041	0,0120	С	С
			2021	4	0,0112	0,0276	С	С
			2022	4	0,0003	0,0011	С	С
			2023	4	0,0082	0,0289	С	С
			2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	4	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		ASU150	2019	5	0,0004	0,0019	С	С
		A30 130	2020	4	0,0017	0,0039	С	С
			2021	4	0,0063	0,0181	С	С
			2022	4	0,0013	0,0028	С	С
Ríos	Asua-A		2023	4	0,0011	0,0044	С	С
11105	Asua-A		2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	0,3877	0,8550	NC	NC
			2018	4	0,8165	1,1840	NC	NC
		OST01	2019	5	0,5715	1,0934	NC	NC
		03101	2020	4	1,0915	1,5576	NC	NC
			2021	4	0,7913	1,3020	NC	NC
			2022	4	0,7034	1,0747	NC	NC
			2023	4	1,3327	2,1817	NC	NC
			2014	12	0,8545	1,9490	NC	NC
			2015	12	0,7939	1,5590	NC	NC
			2016	6	0,4887	0,9470	NC	NC
		IH-2	2017	6	0,5370	0,8900	NC	NC
		11 1-2	2018	6	0,5965	0,8340	NC	NC
			2019	6	0,3963	0,8960	NC	NC
			2020	6	0,4453	0,6380	NC	NC
			2021	4	0,8283	1,7897	NC	NC

ASU160 2022 4	CH máximo 1,3310 1,9796 0,0395 0,0415 0,0567 0,0143	NCA-MA NC NC C	NCA-CMA NC NC
ASU160 2014 12	0,0395 0,0415 0,0567 0,0143	С	
ASU160 ASU160 2015 9	0,0415 0,0567 0,0143		C
ASU160 2016 12 0,0088 2017 12 0,0012 2018 12 0,0090 2019 11 0,0027 2020 11 0,0313 2021 12 0,0191 2022 12 0,0173	0,0567 0,0143		С
ASU160	0,0143	С	NC
ASU160 2018 12 0,0090 2019 11 0,0027 2020 11 0,0313 2021 12 0,0191 2022 12 0,0173		С	NC
ASU160 2019 11 0,0027 2020 11 0,0313 2021 12 0,0191 2022 12 0,0173		С	С
2019 11 0,0027 2020 11 0,0313 2021 12 0,0191 2022 12 0,0173	0,0257	C	С
2021 12 0,0191 2022 12 0,0173	0,0136	С	С
2022 12 0,0173	0,1167	NC	NC
	0,0468	С	NC
1 10000 40 00400	0,0415	С	NC
	0,1205	NC	NC
2017	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
	<lc< td=""><td>C</td><td>С</td></lc<>	C	С
	0,0023 0,0020	С	C
	0,0020	C C	C
2022 4 <lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
	0,0050	C	C
	0,0030	NC	NC
	0,2660	NC NC	NC NC
	0,7300	NC	NC NC
2019 5 0.1958	0,5157	NC	NC NC
('AM1)1	0,2601	NC	NC
	0,2164	NC	NC
	0,3019	NC	NC
	0,1687	NC	NC
	0,8100	NC	NC
	1,7600	NC	NC
	1,4700	NC	NC
	1,2650	NC	NC
	0,6260	NC	NC
2019 12 0,2614	0,6200	NC	NC
2020 12 0,2212	0,9700	NC	NC
2021 6 0,1266	0,2520	NC	NC
	0,8620	NC	NC
	0,5060	NC	NC
	0,2439	NC	NC
	0,2983	NC	NC
	0,1808	NC	NC
	0,1780	NC	NC
2020 4 0,1916	0,3084	NC NC	NC NC
	0,3290	NC NC	NC NC
	0,5700	NC NC	NC NC
	0,4710	NC NC	NC NC
	0,1728	NC NC	NC NC
	0,2061 0,2217	NC NC	NC NC
2010 5 0.1453	0,2217	NC NC	NC NC
	0,2748	NC NC	NC NC
	0,2046	NC NC	NC NC
	0,3920	NC NC	NC NC
	0,3920	NC NC	NC NC
	0,2090	NC NC	NC NC
2015 1 <lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
	0,0399	NC	NC
	0,0399	NC	NC NC
2018 1 0.0304	0,0304	NC	NC NC
	0,0268	NC	NC NC
	0,0174	NC	C
	0,0064	NC	C
	0,0820	NC	NC
	0,0730	NC	NC

Del análisis de concentraciones máximas y promedio de 2023 desde aguas arriba hasta el estuario se pueden identificar los **principales focos contaminantes**. Las concentraciones más altas se detectan en OST01 (Figura 4), que reflejan los aportes del vertedero de Artxanda (Figura 3), que en 2023 también se reflejan en ASU160 con incumplimiento de la NCA-MA y NCA-CMA. Los niveles que se detectan en IH-1 (Figura 4), son acordes con la presencia de suelos contaminados en las inmediaciones de los terrenos en los que se situaban las fábricas de lindano Nexana S.A., dedicadas a la fabricación de lindano (γ -HCH) entre 1952 y 1982 (Figura 3).

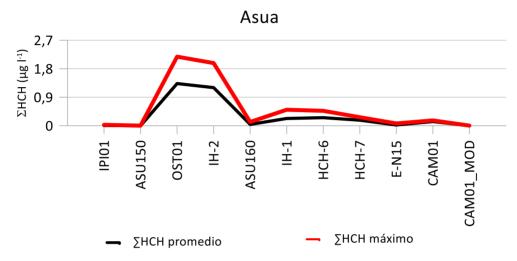


Figura 4 Asua y su zona de influencia, 2023. Valores promedio anual y máximo anual de ∑HCH en aguas.

Respecto a los <u>isómeros predominantes</u>, en las estaciones localizadas en aguas continentales superficiales (IPI01, ASU150, OST01, IH-2 y ASU 160), domina el β -HCH a lo largo del periodo de estudio, que representa, en promedio, entre un 60% y un 73% del total de HCH (Tabla 10).

Estos resultados contrastan con el obtenido en el IH-1 (sita en aguas de transición), posiblemente debido a la cercanía a los depósitos de la empresa Nexana S.A. En este punto el isómero mayoritario es el δ -HCH (representa un 41% del total de HCH, en promedio), seguido de α -HCH (27%).

En los puntos HCH-6 y HCH-7 (también en aguas de transición) la representación de isómeros predominantes es parecida a la encontrada en el punto IH-1. La influencia de la zona donde se situaba la empresa Nexana S.A. también se refleja en estos puntos, pero en concentraciones inferiores, como se ha comentado antes, probablemente debido al efecto de dilución.

Tabla 10 Promedio de los porcentajes de representación de cada isómero con respecto al ΣHCH en cada una de las estaciones del Asua y su zona de influencia, para el periodo 2014-2023.

ESTACION	α-НСН	β-нсн	δ-НСН	ε-НСН	γ-НСН
IPI01	22	60	16		1
ASU150	6	67	24		3
OST01	15	70	13		2
IH-2	17	62	10	12	2
ASU160	14	73	12		1
CAM01	15	76	8		1
CAM01_MOD	0	100	0		0
IH-1	27	15	41	11	7
HCH-6	29	14	46	12	8
HCH-7	31	14	44	12	7
E-N15	31	15	38	8	8

Por otro lado, en la estación IH-1 se dispone de resultados mensuales/bimestrales desde enero de 2014 hasta diciembre de 2023, y en la estación IH-2 hay datos bimestrales hasta diciembre 2020, lo que permite estudiar la **variabilidad intermensual**. Adicionalmente se han considerado los resultados en las estaciones HCH-6, HCH-7 (Figura 5), en las que desde 2021 se ha muestreado bimestralmente. En cuanto a la variabilidad intermensual se puede indicar que:

- Los puntos HCH-6 y HCH-7 no muestran, en general, un patrón uniforme de variabilidad entre 2016 y 2023, destacando un aumento de la concentración en la estación HCH-6 desde 2020.
- La estación IH-2 parece presentar un patrón de concentraciones más bajas en verano-otoño, mientras que las concentraciones más altas en la estación IH-1 se observan en verano (Figura 5). En esta última estación se observa una disminución en la concentración de HCH desde el inicio del estudio en 2014 hasta 2021, aumentado otra vez en 2022.

En la Figura 5 se observa gran variabilidad en todas las estaciones y meses de estudio siendo muy difícil indicar una tendencia de los datos observados.

En la estación HCH-6 y HCH-7 se observa, un repunte de la concentración en agosto de 2022 y sin una clara disminución en 2023, en las estaciones localizadas aguas abajo. Además, las aguas de estos puntos tienen concentraciones 10 veces inferiores a las de aguas arriba, seguramente por efecto de dilución que se da en esta zona por la influencia de la marea.

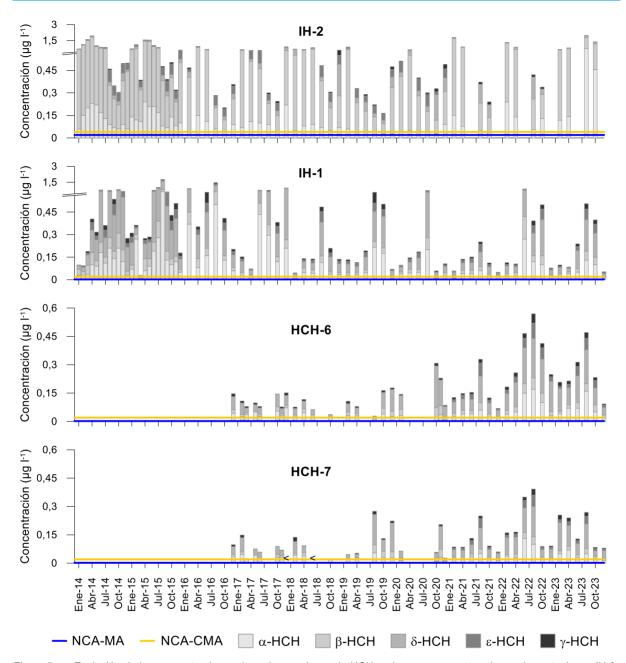


Figura 5 Evolución de las concentraciones de cada congénere de HCH en las aguas muestreadas en las estaciones IH-2, IH-1, HCH-6 y HCH-7, en la zona del Asua, entre 2014 y 2023. Con el signo '<' se señalan las fechas en las que todos los congéneres analizados están por debajo del límite de cuantificación. En las fechas en las que se muestreó en dos estados de marea se representa el valor promedio. NCA: norma de calidad ambiental; MA: media anual; CMA: concentración máxima anual.

En este ámbito, la **influencia de la marea** se ha estudiado en los puntos localizados en aguas de transición (IH-1, HCH-6 y HCH-7) entre 2017 y 2020, dado que desde 2021 sólo se ha muestreado en bajamar. Así, en la Figura 6 se representan las concentraciones recogidas en pleamar y bajamar en las tres estaciones del ámbito del Asua, donde hay influencia mareal.

En las estaciones HCH-6 y HCH-7 se observa que, en general, las concentraciones en bajamar son superiores a las de pleamar.

En la estación IH-1 no se ve ese efecto: las concentraciones son parecidas o incluso mayores en pleamar. Esto es debido a que el punto IH-1 se sitúa aguas arriba, casi en el límite de la zona de transición, y además podría estar influenciado por la cercanía de la zona donde se situaba la empresa

Nexana S.A., por lo que no se evidencia el efecto de dilución por pleamar, como sucede en los puntos HCH-6 y HCH-7.

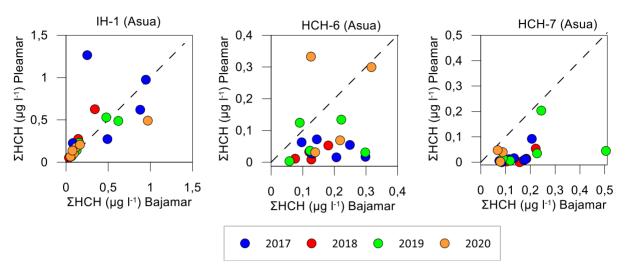


Figura 6 Concentración del sumatorio de HCH (µg l⁻¹) en pleamar y bajamar en los muestreos realizados entre 2017 y 2020. Cada punto representa una fecha de muestreo. La línea discontinua representa la relación 1:1.

Por otro lado, en la zona del Asua y su zona de influencia se dispone de datos de concentración de ΣHCH en <u>sedimentos</u> en la estación E-N15 que tiene muestreo de aguas, aunque no se han muestreado con la misma periodicidad y no todos los años se han analizado los mismos congéneres de HCH (Tabla 11). Los resultados en sedimentos de 2023 se presentan en el Anexo (Tabla A10).

Los datos anuales (2002-2023) de ΣHCH en los sedimentos muestreados en la estación ASU160, situada aguas arriba de IH-1 (Asua), son inferiores al límite de cuantificación en el 86% de los casos, con concentraciones entre 1,8 y 45 μg kg⁻¹ de α-HCH. Por lo tanto, la afección por HCH observada en las aguas muestreadas en la estación IH-1 no se puede relacionar directamente con el contenido de HCH encontrado en sedimentos en la estación ASU160 (Tabla 11).

En E-N15, las concentraciones observadas en sedimentos (2002-2023) son inferiores al límite de cuantificación en un 52% de los casos. En este punto se observaron puntualmente concentraciones elevadas de α -HCH y γ -HCH entre 2009 y 2011, siendo en 2011 cuando se observaron concentraciones de 322,48 y 105,84 μ g kg⁻¹, respectivamente, y disminuyeron a 9 y 1 μ g kg⁻¹ (por debajo de límite de cuantificación), respectivamente, en 2012. En 2023 la concentración promedio en sedimentos en este punto es < LC (1 μ g kg⁻¹).

Tabla 11 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Asua y su zona de influencia. (ver nota 7 de Tabla 6)

Zona	Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ∑HCH <lc< th=""></lc<>
Λουο	E-N15	22 datos (2002-2023)	2002-2016: α, γ 2017-2023: α, β, δ, ε, γ	11 (52 %)
Asua	ASU160	21 datos (2002-2017,2019-2023)	2003-2007: α, β, δ, ε, γ 2002, 2008-2017,2019-2023: α, β, δ, γ	18 (86 %)

En el ámbito del Asua y su zona de influencia también se dispone de datos de concentración de HCH en <u>biota</u> (*Anguilla anguilla; Luciobarbus graellsii; Chelon labrosus; Parachondrostoma miegii; Salmo trutta fario*), en la estación ASU160 (Tabla 12). Los resultados obtenidos en biota en los muestreos de 2023 se presentan en el Anexo (Tabla A11). Las concentraciones de isómeros de HCH en biota no superan los límites de cuantificación correspondientes, excepto de manera puntual, en 2006, 2008, 2018 y 2021.

El rango de concentración de Σ HCH en biota en este periodo (2002-2023) en ASU160 es de 2-1797,8 µg kg⁻¹ PF, siendo las concentraciones más altas en los 4 isómeros analizados (α , β , δ , γ) en 2008. Los resultados obtenidos en biota son acordes con los resultados obtenidos aguas arriba en la zona IH-2 y OST01.

Tabla 12 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Asua y su zona de influencia. (ver nota 7 de Tabla 6)

Zona	Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
Asua	ASU160	19 (2003-2009;2012-2023)	2003-2007, 2022 y 2023: α, β, δ, ε, γ 2009-2021: α, β, δ, γ	15 (74%)

3.3. GALINDO Y SU ZONA DE INFLUENCIA

La localización de las <u>estaciones de muestreo</u> de aguas consideradas en el Galindo y su zona de influencia se presenta en la Figura 7 y Tabla 13. Se corresponde con un total de tres estaciones asociadas al río Galindo, dos puntos de control asociados al embalse de Loiola y cuatro estaciones en la masa de agua de transición Nerbioi Interior.

Tabla 13 Estaciones de muestreo de aguas. Galindo y su zona de influencia. * Estaciones en las que también se ha realizado muestreo de sedimentos en el periodo de estudio (2014-2023). ** Estaciones en las que tambien se ha realizado muestreo de biota en el periodo de estudio.

Zona	Categoría	Masa de agua	Estación	UTMX ETRS89	UTMY ETRS89	Proyecto	
			OIO-ESC1	495717	4791483	RSEQR*	
			OIO-EMB	496242	4790827	RSEQR	
	Ríos	Galindo-A	GAL090	500390	4791523	Ctr. Inv. RSEQR	
			GAL095*,**	500564	4791882	RSEQR	
Galindo			HCH-23	500145	4792373	Ctr. Inv. RSEQR	
			HCH-15	499827	4792794		
	Aguas de	Nerbioi Interior	HCH-16	499462	4793444	IM-23-HCH	
	transición	Transición	HCH-22	499913	4793958	IIVI-23-HCH	
			HCH-18	500813	4794672		

Los resultados obtenidos en la matriz <u>agua</u> en los muestreos de 2023 en las estaciones de la Tabla 13 se presentan en el Anexo (Tabla A5).

En la Tabla 14 se presenta, para el periodo 2014-2023, la evolución anual del cumplimiento de las normas de calidad establecidas para el HCH (Tabla 2).

En el ámbito Galindo y su zona de influencia las estaciones de aguas de transición no alcanzan el buen estado químico en 2023, al superar las NCA correspondientes. En todas las estaciones asociadas a ríos se alcanza el buen estado químico por ΣHCH, excepto en la estación HCH-23 al superar las NCA establecidas.

En esta zona se observa una clara afección del ΣHCH en las estaciones asociadas a aguas de transición. Todas estas estaciones (HCH-15, HCH-16, HCH-18 y HCH-22) incumplen las normas establecidas desde 2014 (Tabla 14).

En el caso de las cinco estaciones asociadas a aguas continentales superficiales, dos (OIO-EMB y GAL090) cumplen con las normas establecidas para el Σ HCH durante todo el periodo 2014-2023. En el resto de las estaciones se registran incumplimientos puntuales de las normas; GAL095 (en 2014), HCH-23 (en 2014, 2015, 2017, 2019 y 2021-2023), OIO-ESC1 (en 2014-2016 para la NCA-CMA) (Tabla 14).

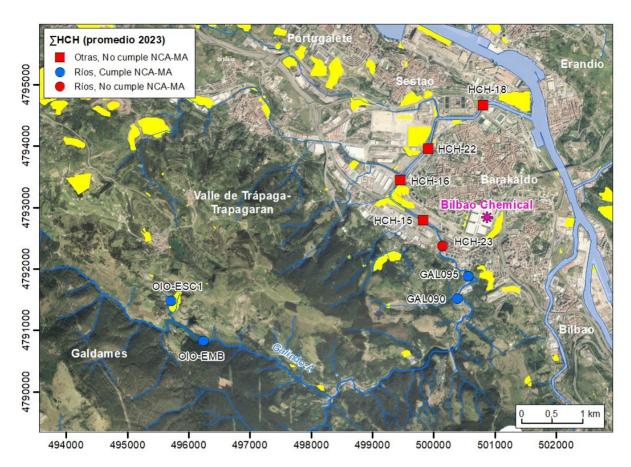


Figura 7 Galindo y su zona de influencia. Cumplimiento de la norma de calidad ambiental (NCA-MA: media anual) en aguas en 2023 para ΣHCH. Cuadrados: otras aguas superficiales (costera y de transición); círculos: aguas superficiales continentales (ríos). Se indica en amarillo la localización de emplazamientos potencialmente contaminantes y de los terrenos en los que se situaba la empresa Bilbao Chemical, fabricante de HCH entre 1947 y 1987.

Tabla 14 Evolución del cumplimiento de las normas de calidad ambiental (NCA) de ΣHCH (μg l⁻¹) entre 2014 y 2023, en las aguas muestreadas en las estaciones del Galindo y su zona de influencia. Se presenta el valor medio anual (MA) y el máximo anual (CMA) junto al número de muestras disponibles para cada año. Para el sumatorio de los congéneres (∑HCH), aquellos valores inferiores al límite de cuantificación (LC) se han considerado 0. Ver límites de cuantificación en página 9. C: cumple, NC: no cumple.

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
			2014	26	0,0168	0,2535	С	NC
			2015	25	0,0109	0,0518	С	NC
			2016	31	0,0194	0,2906	С	NC
			2017	15	0,0047	0,0281	С	С
		OIO-ESC1	2018	9	0,0049	0,0372	С	С
		OIO-ESC1	2019	9	0,0021	0,0150	С	С
			2020	9	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Galindo-A		2021	11	0,0001	0,0013	С	С
			2022	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Ríos			2023	11	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Kios	Gailliu0-A		2014	33	0,0008	0,0055	С	С
			2015	37	0,0003	0,0040	С	С
			2016	40	0,0002	0,0023	С	С
			2017	16	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		OIO-EMB	2018	9	0,00005	0,0004	С	С
		OIO-EIVID	2019	9	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2020	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		-	2021	8	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2022	11	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2023	11	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
-	_		2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
			2018	4	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
			2019	5	0,0003	0,0017	C	C
		GAL090	2020	4	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
			2021	4	0,0004	0,0016	С	C
			2022	4	<lc< td=""><td><lc< td=""><td>C</td><td>C</td></lc<></td></lc<>	<lc< td=""><td>C</td><td>C</td></lc<>	C	C
			2023	4	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2014	8	0,1424	0,6090	NC	NC
			2015	9	0,0015	0,0074	С	С
			2016	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		GAL095	2018	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		GAL093	2019	12	0,0006	0,0039	С	С
			2020	11	0,0004	0,0022	С	С
			2021	12	0,0003	0,0023	С	С
			2022	12	0,0008	0,0028	С	С
			2023	12	0,0015	0,0067	С	С
			2014	12	0,3175	1,4400	NC	NC
			2015	12	0,0342	0,0517	NC	NC
			2016	6	0,0199	0,0310	C	С
			2017	6	0,0212	0,0378	NC	С
		HCH-23	2018	6	0,0144	0,0352	C	C
			2019	6	0,0532	0,1370	NC	NC
			2020	6	0,0138	0,0269	C	С
			2021	4	0,0260	0,0320	NC NC	C
			2022	4	0,0268	0,0450	NC NC	NC NC
			2023	4 12	0,0513	0,0890	NC NC	NC NC
			2014 2015	12	0,3734 0,1352	1,3400 0,4000	NC NC	NC NC
			2016	7	0,1332	0,4660	NC NC	NC NC
		HCH-15	2017	11	0,0004	0,1000	NC NC	NC NC
			2018	12	0,0327	0,2000	NC	NC
			2019	6	0,0713	0,2000	NC	NC NC
			2020	6	0,0002	0,1238	NC	NC
			2021	6	0,0460	0,0946	NC	NC
			2022	6	0,1057	0,3590	NC	NC
			2023	6	0,0570	0,1071	NC	NC
			2016	2	0,0848	0,1395	NC	NC
			2017	14	0,0647	0,1459	NC	NC
			2018	8	0,0671	0,1407	NC	NC
		HOLL 40	2019	5	0,1717	0,4113	NC	NC
		HCH-16	2020	4	0,2346	0,4454	NC	NC
	Niambia:		2021	6	0,1785	0,2340	NC	NC
Aguas de	Nerbioi Interior		2022	6	0,2623	0,6150	NC	NC
transición	Interior Transición		2023	6	0,1664	0,2660	NC	NC
	HALISICIUH		2016	2	0,0766	0,1294	NC	NC
			2017	14	0,0616	0,1598	NC	NC
			2018	8	0,0812	0,1537	NC	NC
		HCH-22	2019	5	0,1500	0,3628	NC	NC
		11011-22	2020	4	0,1408	0,2708	NC	NC
			2021	6	0,2328	0,3430	NC	NC
			2022	6	0,3278	0,5250	NC	NC
			2023	6	0,1874	0,3410	NC	NC
			2016	2	0,0600	0,0969	NC NC	NC
			2017	14	0,0497	0,1361	NC	NC NC
			2018	8	0,0540	0,1090	NC NC	NC NC
		HCH-18	2019	5	0,0756	0,1402	NC NC	NC NC
		1 101 1-10	2020	4	0,0742	0,0994	NC NC	NC NC
			2021	6	0,0910	0,1260	NC NC	NC NC
			2022	6	0,1165	0,2150	NC NC	NC NC
			2023	6	0,1157	0,1960	NC	NC

Según los datos de 2023, y analizando los datos con una perspectiva desde aguas arriba hacia aguas abajo, la primera afección significativa se observa en la estación HCH-23 (Figura 8), zona en la que estuvo ubicada la empresa Bilbao Chemical (en la margen derecha del Galindo), que fabricó lindano entre 1947 y 1987, y en la que se localiza la celda de seguridad de Argalario (en la margen izquierda del Galindo; Figura 7).

Por otro lado, aguas abajo de la estación HCH-15 se han inventariado varios vertederos que pudieron haber sido utilizados para verter residuos de lindano durante los años en los que se fabricó en la zona. Además, las estaciones HCH-16 y HCH-22 también presentan concentraciones elevadas de HCH.

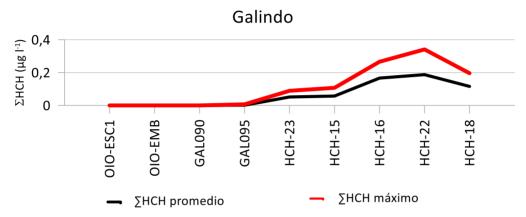


Figura 8 Galindo y su zona de influencia en 2023. Valores promedio anual y máximo anual de ΣΗCH en aguas.

En este ámbito de estudio, el <u>isómero predominante</u> es, generalmente, el α -HCH, que representa, en promedio, entre un 40% y un 46% del HCH en las estaciones de HCH-23 a HCH-18. El β -HCH es el segundo isómero más abundante en esta zona. Hay que destacar que la representación media del γ -HCH (lindano) aumenta desde un 3%, en HCH-23, a un 10%, en HCH-18 y OIO-EMB. (Tabla 15).

Tabla 15 Promedio de los porcentajes de representación de cada isómero con respecto al ΣHCH en cada una de las estaciones del Galindo y su zona de influencia, para el periodo 2014-2023.

ESTACION	α-НСН	β-нсн	δ-НСН	ε-НСН	γ-НСН
OIO-ESC1	9	85	0		6
OIO-EMB	47	43	0		10
GAL090	50	50	0		0
GAL095	27	57	7		9
HCH-23	41	22	18	21	3
HCH-15	46	20	15	15	4
HCH-16	44	28	18	10	7
HCH-22	40	36	15	10	6
HCH-18	41	31	16	9	10

Para poder estudiar la <u>variabilidad intermensual</u> de los congéneres de HCH en el agua se dispone de resultados mensuales/bimestrales en las estaciones HCH-15 y HCH-23, desde enero de 2014 hasta diciembre de 2020; desde 2021 se hacen 4 muestreos al año en la estación HCH-23. Además, desde 2016 se muestrean las estaciones HCH-16, HCH-18 y HCH-22, y bimestralmente desde 2021 (Figura 9).

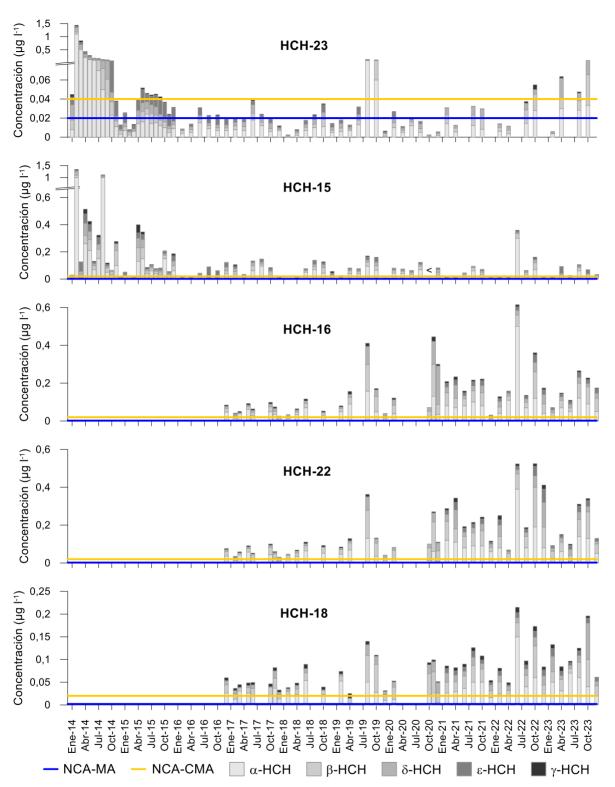


Figura 9 Evolución de las concentraciones de cada congénere de HCH en las aguas muestreadas en las estaciones HCH-23, HCH-15, HCH-16, HCH-22 y HCH-18, en la zona del Galindo, entre 2014 y 2023. Con el signo '<' se señalan las fechas en las que todos los congéneres analizados están por debajo del límite de cuantificación. En las fechas en las que se muestreó en dos estados de marea se representa el valor promedio. NCA: norma de calidad ambiental; MA: media anual; CMA: concentración máxima anual.

En las estaciones HCH-16, HCH-18 y HCH-22 no se identifica un patrón definido de variabilidad intermensual. En estas estaciones se observa una subida de las concentraciones registradas en junio 2022 respecto a los registros previos de 2020 y 2021.

En la estación HCH-15 los mínimos intra-anuales ocurren normalmente entre diciembre y mayo (Figura 9). Desde 2014 a 2021 se observa una disminución en la concentración promedio anual del ΣHCH en esta estación, dándose un repunte de la concentración en junio de 2022.

En la estación HCH-23 (Galindo) los mínimos intra-anuales ocurren normalmente entre diciembre y abril; los datos de 2020 se encuentran entre los menores de la serie histórica (Figura 9) y las concentraciones registradas en octubre y diciembre 2022 son ligeramente superiores a los del 2020-2021. Las concentraciones registradas en octubre de 2023 son parecidas a las encontradas en verano del 2019. Por otro lado, las concentraciones promedio en los años 2016 a 2018 y 2020 son inferiores a las de 2014, 2015, 2019 y 2021 a 2023 (Tabla 14).

Las diferencias con respecto al inicio de la serie en la estación HCH-23 se deben a actuaciones que se llevaron a cabo en febrero de 2014 en la zona de la surgencia de Tellaetxe. Las concentraciones en este punto fueron disminuyendo hasta principios de 2018, pero a lo largo de ese año se observa una ligera subida de la concentración, aunque el promedio anual de las concentraciones de 2018 no supera la NCA-MA establecida. En 2019, las concentraciones en esta estación son, en general, superiores a los valores de 2018, superando tanto la NCA-MA como la NCA-CMA, y con valores en agosto y octubre de 2019 similares a los observados al inicio de la serie. A pesar de que en 2020 las concentraciones disminuyen con respecto a 2019, los datos obtenidos en 2021, 2022 y 2023 no cumplen con la NCA-MA y en 2022, y en 2023 tampoco cumple con la NCA-CMA. De hecho, la concentración media observada en 2023 en este punto (0,0513 μg l⁻¹) es similar a la de 2019.

En este ámbito, la <u>influencia de la marea</u> se ha estudiado en los puntos localizados en aguas de transición (HCH-15, HCH-16, HCH-22 y HCH-18) entre 2017 y 2020, dado que desde 2021 sólo se ha muestreado en bajamar. En la Figura 10 se representan las concentraciones recogidas en pleamar y bajamar de las tres estaciones del ámbito del Galindo, donde hay influencia mareal.

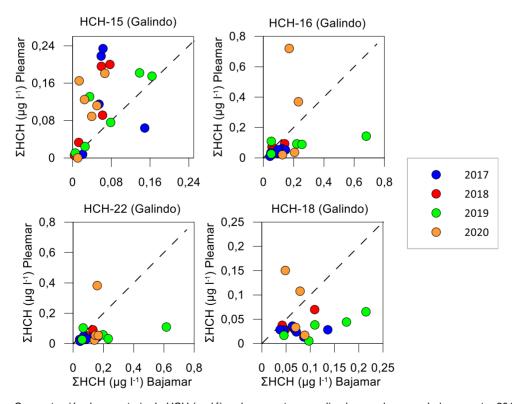


Figura 10 Concentración de sumatorio de HCH (μg l-¹) en los muestreos realizados en pleamar y bajamar entre 2017 y 2020. Cada punto representa una fecha de muestreo. La línea discontinua representa la relación 1:1.

En todas las estaciones, menos en HCH-15, se observa que las concentraciones en bajamar son superiores a las de pleamar. En la estación HCH-15 las concentraciones son parecidas o incluso mayores en pleamar. Esto es acorde con la localización del punto HCH-15; se sitúa en el límite de la zona de transición y está cerca de la antigua empresa de Bilbao-Chemical. Así, en el punto HCH-15 no se evidencia el efecto de dilución por pleamar como sucede en el resto de los puntos de este ámbito (HCH-16, HCH-22 y HCH-18).

En la zona del Galindo y su zona de influencia se dispone de datos de concentración de ΣHCH en <u>sedimentos</u> en una estación de las que se han muestreado aguas (GAL095), aunque no se han muestreado con la misma periodicidad y no todos los años se han analizado los mismos congéneres de HCH (Tabla 16).

Los datos anuales de HCH en los sedimentos muestreados en GAL095 son inferiores al límite de cuantificación en el 75% de los casos, habiendo datos puntuales entre 2 y 3 µg kg⁻¹ en algunos de los isómeros de HCH en 2002; el resto de los años, todos los valores se encuentran por debajo de límite de cuantificación.

Tabla 16 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Galindo y su zona de influencia. (ver nota 7 de Tabla 6).

Zona	Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
Galindo	GAL095	4 muestreos (2002, 2015-2017)	α, β, δ, γ	3 (75%)

Además, en este mismo punto GAL095, hay datos de biota entre 2015-2018. Todos los datos registrados se encuentran por debajo de límite de cuantificación para biota, 10 µg kg⁻¹ PF (Tabla 19).

Tabla 17 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Galindo y su zona de influencia. (ver nota 7 de Tabla 6).

Zona	Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
Galindo	GAL095	4 muestreos (2015-2018)	α, β, δ, γ	4 (100%)

3.4. GOBELA Y SU ZONA DE INFLUENCIA

La localización de las <u>estaciones de muestreo</u> de aguas consideradas en el Gobela y su zona de influencia se presenta en la Figura 11 y Tabla 18; se corresponde con un total de cuatro estaciones asociadas al río Gobela, y una estación de la masa de agua de transición Nerbioi Interior.

Tabla 18 Estaciones de muestreo de aguas. Gobela y su zona de influencia. * Estaciones en las que también se ha realizado muestreo de sedimentos en el periodo de estudio. ** Estaciones en las que tambien se ha realizado muestreo de biota en el periodo de estudio.

Zona	Categoría	Masa de agua	Estación	UTMX ETRS89	UTMY ETRS89	Proyecto
			GOB031	500083	4801767	Ctr. Inv. RSEQR
	Ríos	Gobela-A	LL01	500032	4798684	Ctr. Inv. RSEQR
Gobela		Gobela-A	GOB082*,**	500033	4798370	RSEQR
Gobela			HCH-19	499949	4796466	Ctr. Inv. RSEQR
	Aguas de transición	Nerbioi Interior Transición	E-N17*	500185	4795862	RSEETyC

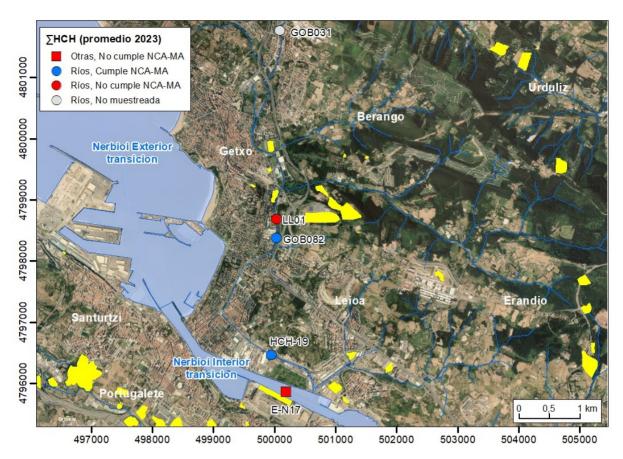


Figura 11 Gobela y su zona de influencia. Cumplimiento de la norma de calidad ambiental (NCA-MA: media anual) en aguas, en 2023 para de ΣHCH. Cuadrados: otras aguas superficiales (costera y de transición); círculos: aguas superficiales continentales (ríos). Se indica en amarillo la localización de emplazamientos potencialmente contaminantes.

Los resultados obtenidos en la matriz <u>agua</u> en 2023 en las estaciones de la Tabla 18 se presentan en el Anexo (Tabla A6). En la Tabla 19 se presenta, para el periodo 2014-2023, la evolución anual del cumplimiento de las normas de calidad establecidas para el HCH (Tabla 2).

En la zona del Gobela, todas las estaciones de aguas continentales superficiales (ríos) consideradas cumplen con las normas establecidas en el periodo de estudio, excepto entre 2017 y 2023 en la estación LL01 (punto de control del lixiviado del vertedero de Lleuri, bajo el centro comercial Artea, que está inventariado como emplazamiento potencialmente contaminante) (Tabla 19). Las superaciones de norma de calidad registradas en la estación LL01 (Figura 11 y Figura 12) no se evidencian en superaciones de norma de calidad en las estaciones situadas aguas abajo (GOB082 y HCH-19, Figura 11 y Figura 12), probablemente por dilución.

Las concentraciones en E-N17 a lo largo de la serie de estudio no han variado sustancialmente, superando las NCA correspondientes desde 2014 hasta 2023. Estas concentraciones no están directamente influenciadas por los aportes directos del Gobela, como en la estación HCH-19, sino que parecen estar influenciadas por los aportes de aguas arriba del propio eje principal del estuario.

Tabla 19 Evolución del cumplimiento de las normas de calidad ambiental (NCA) de ΣHCH (μg l-¹) entre 2014 y 2023, en las aguas muestreadas en las estaciones del Gobela y su zona de influencia. Se presenta el valor medio anual (MA) y el máximo anual (CMA) junto al número de muestras disponibles para cada año. Para el sumatorio de los congéneres (ΣHCH), aquellos valores inferiores al límite de cuantificación (LC) se han considerado 0. Ver límites de cuantificación en página 9. C: cumple, NC: no cumple.

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
		GOB031	2018	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	0,0797	0,1616	NC	NC
			2018	5	0,0882	0,1745	NC	NC
		1104	2019	5	0,1146	0,3676	NC	NC
		LL01	2020	4	0,1576	0,2777	NC	NC
			2021	4	0,0981	0,1462	NC	NC
			2022	4	0,0818	0,1016	NC	NC
			2023	4	0,0514	0,0699	NC	NC
			2015	7	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2016	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	12	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Ríos	Gobela-A	GOB082	2019	12	0,0010	0,0039	С	С
Kios	Gubela-A		2020	11	0,0109	0,0290	С	С
			2021	12	0,0034	0,0065	С	С
			2022	12	0,0035	0,0067	С	С
			2023	12	0,0026	0,0069	С	С
			2014	12	0,0155	0,0295	С	С
			2015	12	0,0166	0,0257	С	С
			2016	6	0,0152	0,0225	С	С
			2017	6	0,0119	0,0176	С	С
		HCH-19	2018	6	0,0139	0,0235	С	С
		11011-19	2019	6	0,0099	0,0174	С	С
			2020	6	0,0148	0,0197	С	С
			2021	4	0,0044	0,0077	С	С
			2022	4	0,0027	0,0055	С	С
			2023	4	0,0040	0,0081	С	С
			2014	12	0,0142	0,0314	NC	NC
			2015	12	0,0183	0,0529	NC	NC
			2016	12	0,0171	0,0369	NC	NC
			2017	12	0,0196	0,0413	NC	NC
Aguas de	Nerbioi	E-N17	2018	11	0,0215	0,0385	NC	NC
transición	Interior Transición	IN I /	2019	12	0,0145	0,0329	NC	NC
			2020	11	0,0167	0,0271	NC	NC
			2021	12	0,0213	0,0480	NC	NC
			2022	12	0,0200	0,0429	NC	NC
			2023	12	0,0211	0,0469	NC	NC

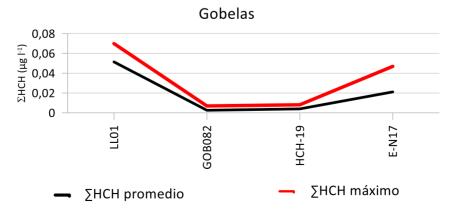
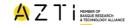



Figura 12 Gobela y su zona de influencia en 2023. Valores promedio anual y máximo anual de ΣHCH en aguas.

En cuanto a los <u>isómeros predominantes</u> en el ámbito del Gobela en el periodo de estudio, los isómeros β -HCH y δ -HCH en el punto LL01 representan, en promedio, un 45% y un 28% del total de HCH, respectivamente (Tabla 20); en la estación HCH-19 incluso el ϵ -HCH representa, en promedio, un 36% del HCH. En la estación E-N17 las abundancias varían, siendo el α -HCH y el δ -HCH los isómeros más abundantes, con un 31 % y 32% de representación media, respectivamente.

El γ -HCH muestra una representación media mayor en la estación E-N17 (9%) que en LL01 y HCH-19 (2 y 5%, respectivamente). Esto puede ser indicativo de que la afección en el eje principal del estuario está más influenciada por la zona de aguas arriba del estuario que por los aportes del Gobela.

Tabla 20 Promedio de los porcentajes de representación de cada isómero con respecto al ΣHCH en cada una de las estaciones del Gobela y su zona de influencia, para el periodo 2014-2023. La estación GOB031 no se presenta porque todos los isómeros muestran concentraciones inferiores a los límites de cuantificación.

ESTACION	α-НСН	β-нсн	δ-нсн	ε-HCH	γ-НСН
LL01	25	45	28		2
GOB082	1	27	72		0
HCH-19	9	22	34	36	5
E-N17	31	19	32	10	9

En Gobela y su zona de influencia se dispone de resultados mensuales/bimestrales desde enero de 2014 hasta 2023, en las estaciones E-N17 y HCH-19, y desde junio de 2015 hasta 2023 en GOB082, lo que permite estudiar la **variabilidad intermensual**. En la estación E-N17, generalmente, se observan máximos intra-anuales entre junio y agosto (Figura 13).

En la estación HCH-19 no se observa variabilidad en las concentraciones medias anuales (Tabla 19), aunque se observa, en general, un descenso de la concentración desde 2021 respecto a los años previos.

En la estación GOB082 la variabilidad puede evaluarse desde junio de 2019 (anteriormente todos los valores observados fueron por debajo del límite de cuantificación disponible), y no se observa variabilidad reseñable, estando los promedios anuales por debajo de NCA-MA, aunque en junio de 2020 se superase la NCA-MA (Tabla 19).

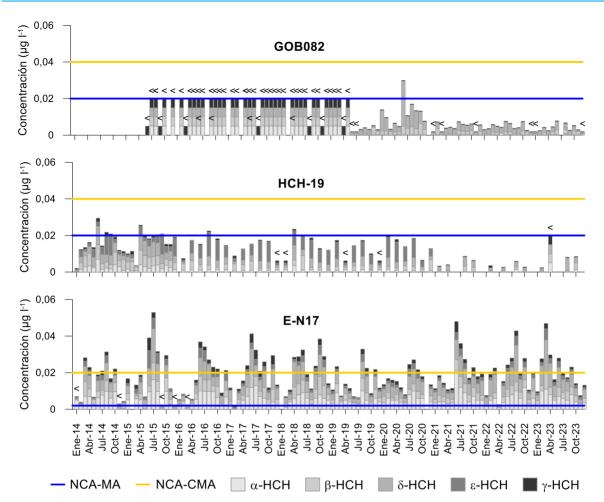


Figura 13 Evolución de las concentraciones de cada congénere de HCH en las aguas muestreadas en las estaciones E-N17 HCH-19 y GOB082, en la zona del Gobela, entre 2014 y 2023. Con el signo '<' se señalan las fechas en las que todos los congéneres analizados están por debajo del límite de cuantificación. En las fechas en las que se muestreó en dos estados de marea se representa el valor promedio. NCA: norma de calidad ambiental; MA: media anual; CMA: concentración máxima anual.

En la zona del Gobela y su zona de influencia se tienen datos de concentración de HCH en <u>sedimentos</u> en dos estaciones en las que se han muestreado aguas (E-N17 y GOB082), aunque no se han muestreado con la misma periodicidad y no todos los años se han analizado los mismos congéneres de HCH (Tabla 21). Los niveles de HCH en los sedimentos de las estaciones E-N17 y GOB082, son inferiores al límite de cuantificación en un 45% y 75% de los casos, respectivamente.

Tabla 21 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Gobela y su zona de influencia (ver nota 7 de Tabla 6).

Zona	Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>	
Gobela	E-N17	22 muestreos (2002-2023)	2002-2016: α, γ 2017-2023: α, β, δ, ε, γ	10 (45%)	
	GOB082	4 muestreos (2002, 2015-2017)	α, β, δ, γ	3 (75%)	

Las concentraciones de α -HCH en el sedimento de E-N17 descendieron entre 2004 y 2020, con concentraciones entre <1 y 497 μ g kg⁻¹ (valor máximo en 2004). El γ -HCH presenta concentraciones entre <0,2 y 200 μ g kg⁻¹ (valor máximo en 2004), y desde 2015 las concentraciones de α -HCH están entre <1 y 7 μ g kg⁻¹; para el resto de los isómeros las concentraciones son inferiores o próximas al límite de cuantificación (1 μ g kg⁻¹). En 2020 dos isómeros superan el límite de cuantificación: α -HCH (1,6 μ g kg⁻¹) y β -HCH (2,1 μ g kg⁻¹).

Las concentraciones en el sedimento del punto GOB082 están generalmente por debajo del límite de cuantificación, excepto en 2002, con un valor de 4 μ g kg⁻¹ para α -HCH y 3 μ g kg⁻¹ para γ -HCH.

Además, en este mismo punto GOB082, hay datos de <u>biota</u> entre 2015-2018 que se encuentran por debajo de límite de cuantificación para biota, 10 µg kg⁻¹ PF (Tabla 26).

Tabla 22 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Gobela y su zona de influencia (ver nota 7 de Tabla 6).

Zor	na Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
Gob	ela GOB082	4 muestreos (2015-2018)	α, β, δ, γ	4 (100%)

3.5. BALLONTI Y SU ZONA DE INFLUENCIA

La localización de las <u>estaciones de muestreo</u> de aguas consideradas en el Ballonti y su zona de influencia se presenta en la Figura 14 y Tabla 23. Se corresponden con un total de siete estaciones asociadas a ríos, y una estación de la masa de agua de transición Nerbioi Interior.

Tabla 23 Estaciones de muestreo de aguas. Ballonti y su zona de influencia en el periodo de estudio (2014-2023).

Zona	Categoría	Masa de agua	Estación	UTMX ETRS89	UTMY ETRS89	Proyecto	
Ballonti			BAL01	496546	4796357		
	Ríos		CAP01	496481	4795882		
		Ibaizabal drenaje transición	BAL11	496780	4795942		
			BAL02	496973	4795848	Ctr. Inv. RSEQR	
			IH-4	497744	4795409		
			IH-90	498455	4794841		
			HCH-11	498880	4793729		
	Aguas de transición	Nerbioi Interior Transición	IH-5	499913	4794752	IM-23-HCH	

Los resultados obtenidos en la matriz <u>agua</u> en los muestreos de 2023 en las estaciones de la Tabla 23 se presentan en el Anexo (Tabla A7). En la Tabla 24 se presenta, para el periodo 2014-2023, la evolución anual del cumplimiento de las normas de calidad establecidas para el HCH (ver Tabla 2).

En el ámbito de Ballonti y su zona de influencia, en 2023, la estación de aguas de transición IH-5 no alcanza el buen estado químico al superar las NCA establecidas. En las estaciones de drenaje a aguas de transición tampoco se alcanza el buen estado químico al superar las NCA establecidos, excepto en las estaciones BAL01, HCH-11 y CAP01 (Tabla A7).

Desde 2014 se observa una clara afección del HCH en las estaciones IH-5, IH-4, IH-90 y BAL11 y, desde 2017, también en la estación BAL02. No se observa afección relevante en las estaciones BAL01, CAP01 y HCH-11, aunque en 2019 en CAP01 se superó la NCA-CMA.

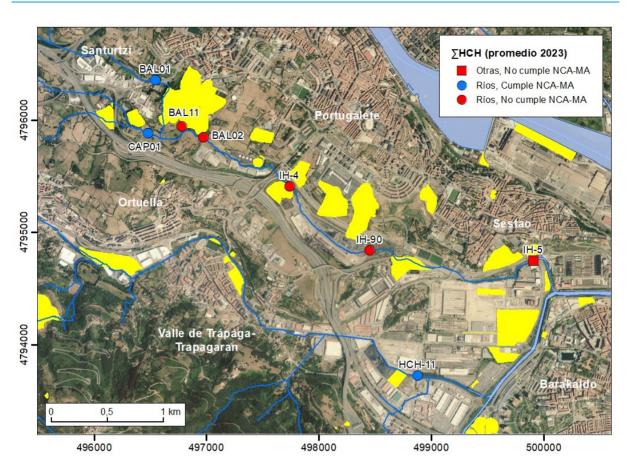


Figura 14 Ballonti y su zona de influencia. Cumplimiento de la norma de calidad ambiental (NCA-MA: media anual) en aguas, en 2023 para ΣHCH. Cuadrados: otras aguas superficiales (costera y de transición); círculos: aguas superficiales continentales (ríos). Se indica en amarillo la localización de emplazamientos potencialmente contaminantes.

Tabla 24 Grado de cumplimiento de las normas de calidad ambiental (NCA) de ΣHCH (μg l⁻¹) entre 2014 y 2023, en las aguas muestreadas en las estaciones del Ballonti y su zona de influencia. Se presenta el valor medio anual (MA) y el máximo anual (CMA) junto al número de muestras disponibles para cada año. Para el sumatorio de los congéneres (∑HCH), aquellos valores inferiores al límite de cuantificación (LC) se han considerado 0. Ver límites de cuantificación en página 9. C: cumple, NC: no cumple.

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
Categoria	Masa de agua	Lotation		TV Triacsitas	•			_
	Ibaizabal drenaje transición	BAL01	2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	0,0020	0,0141	С	С
			2018	4	0,0056	0,0224	С	С
			2019	5	0,0003	0,0013	С	С
			2020	4	0,0004	0,0014	С	С
			2021	4	0,0051	0,0074	С	С
			2022	4	0,0004	0,0017	С	С
			2023	4	0,0004	0,0016	С	С
		CAP01	2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	0,0037	0,0132	С	С
Otras			2018	4	0,0030	0,0121	С	С
Olias			2019	5	0,0181	0,0750	С	NC
			2020	4	0,0047	0,0111	С	С
			2021	4	0,0047	0,0111	С	С
			2022	4	0,0030	0,0071	С	С
			2023	4	0,0033	0,0104	С	С
		BAL11	2016	1	0,5415	0,5415	NC	NC
			2017	7	0,2763	0,4397	NC	NC
			2018	4	0,6227	0,8409	NC	NC
			2019	5	0,5561	1,2101	NC	NC
			2020	4	0,4214	0,6434	NC	NC
			2021	4	0,4667	1,2100	NC	NC

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
			2022	4	0,3954	0,6552	NC	NC
			2023	4	0,3146	0,3923	NC	NC
			2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	0,2532	0,5668	NC	NC
			2018	4	0,4003	0,7137	NC	NC
		BAL02	2019	5	0,2601	0,4065	NC	NC
		DALUZ	2020	4	0,4101	0,5401	NC	NC
			2021	4	0,5040	1,1258	NC	NC
			2022	4	0,3367	0,6914	NC	NC
			2023	4	0,2773	0,6418	NC	NC
			2014	12	0,4925	1,3900	NC	NC
			2015	12	0,6101	0,9300	NC	NC
			2016	6	0,3502	0,7370	NC	NC
			2017	6	0,2243	0,4030	NC	NC
		IH-4	2018	6	0,2942	0,5830	NC	NC
			2019	6	0,2055	0,5000	NC	NC
			2020	6	0,2211	0,3310	NC	NC
			2021	4	0,3510	0,5517	NC	NC
			2022	4	0,1401	0,1588	NC	NC
			2023	4	0,2396	0,4627	NC	NC
		IH-90	2016	1	0,3337	0,3337	NC	NC
			2017	7	0,1513	0,3537	NC	NC
			2018	4	0,1889	0,3379	NC	NC
			2019	5	0,1603	0,2828	NC	NC
		111-30	2020	4	0,2662	0,3548	NC	NC
			2021	4	0,4402	1,0360	NC	NC
			2022	4	0,0783	0,1041	NC	NC
			2023	7	0,1313	0,3547	NC	NC
			2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	7	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2018	4	0,0053	0,0210	С	С
		HCH-11	2019	5	0,0079	0,0237	С	С
		1.011-11	2020	4	0,0012	0,0019	С	С
			2021	4	0,0019	0,0035	С	С
			2022	4	0,0031	0,0084	С	С
			2023	7	0,0028	0,0085	С	С
			2016	2	0,0974	0,1749	NC	NC
			2017	14	0,0686	0,1827	NC	NC
			2018	8	0,0928	0,1810	NC	NC
Aguas de	Nerbioi / Nervión	IH-5	2019	5	0,0884	0,1559	NC	NC
transición	Interior Transición	111-5	2020	4	0,1354	0,1657	NC	NC
			2021	6	0,1538	0,3920	NC	NC
		2	2022	6	0,0956	0,1420	NC	NC
			2023	6	0,1323	0,4050	NC	NC

En 2023, y con una perspectiva desde aguas arriba hacia aguas abajo, la afección por ΣHCH en el ámbito del Ballonti comienza a partir de la estación BAL11 (Figura 15), inmediatamente aguas abajo de la escombrera Etxe-Uli, y continúa hasta desembocar en el Galindo (Figura 14).

Los niveles de ΣHCH detectados desde BAL11 hasta el IH-5 indican la clara presión del vertedero de Etxe-Uli, sin descartar la posible influencia de otros vertederos situados en las proximidades del punto BAL11 (vertederos de La Sia, Rivas Viejo) y el vertedero de la Canteras, en las inmediaciones del punto IH-5.

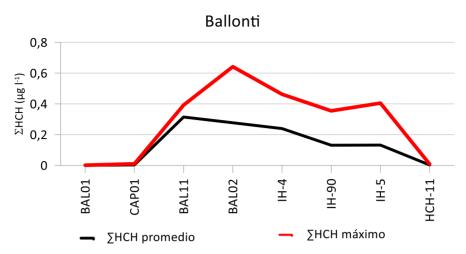


Figura 15 Ballonti y su zona de influencia en 2023. Valores promedio anual y máximo anual de ΣHCH en aguas.

En la estación BAL11, el <u>isómero predominante</u> es el β -HCH, con una representación media del 81% del total de HCH en el periodo de estudio (Tabla 25). En las estaciones localizadas aguas abajo (BAL02, IH-4, IH-90 y IH-5) la predominancia entre β -HCH y δ -HCH es parecida, con representaciones medias de δ -HCH de 45%, 37%, 44% y 33%, respectivamente. En el caso del lindano (γ -HCH), su abundancia relativa aumenta desde aguas arriba en la estación BAL11 (2%) hacia aguas abajo, alcanzando un porcentaje medio de representación del 9% en la estación IH-5, donde se observa la influencia de los vertederos de la cuenca del Ballonti.

Tabla 25 Promedio de los porcentajes de representación de cada isómero con respecto al ΣHCH en cada una de las estaciones del Ballonti y su zona de influencia, para el periodo 2014-2023.

ESTACION	α-НСН	β-нсн	δ-нсн	ε-НСН	γ-НСН
BAL01	0	78	0		22
CAP01	0	97	0		3
BAL11	9	81	9		2
BAL02	9	41	45		5
IH-4	8	28	37	27	6
IH-90	9	42	44		5
HCH-11	24	71	5		0
IH-5	20	29	33	29	9

En la estación IH-4 se dispone de resultados mensuales/bimestrales desde enero de 2014 hasta diciembre de 2020 y desde 2021 los muestreos se realizan 4 veces al año, lo que permite estudiar la **variabilidad intermensual**. Adicionalmente, desde diciembre de 2016 se han considerado los resultados en estaciones del ámbito del bajo Ibaizabal (IH-5, IH-90); desde 2021 la estación IH-5 se ha muestreado bimestralmente. En febrero de 2021 y 2023, coincidiendo con concentraciones elevadas en la estación IH-4, se han observado las concentraciones máximas en estas estaciones, lo que podría estar relacionado con el efecto de lixiviación provocado por las lluvias de la semana previa al muestreo.

En la estación IH-4 se observan máximos intra-anuales entre noviembre y diciembre en el periodo 2014-2017 (Figura 16) y, en general, aunque se observa una disminución de la concentración desde el inicio del estudio (en 2014), se siguen superando las normas establecidas NCA. Las bajas concentraciones obtenidas a finales de los años 2018 a 2020 en esta estación no cumplen con el patrón intra-anual descrito previamente.

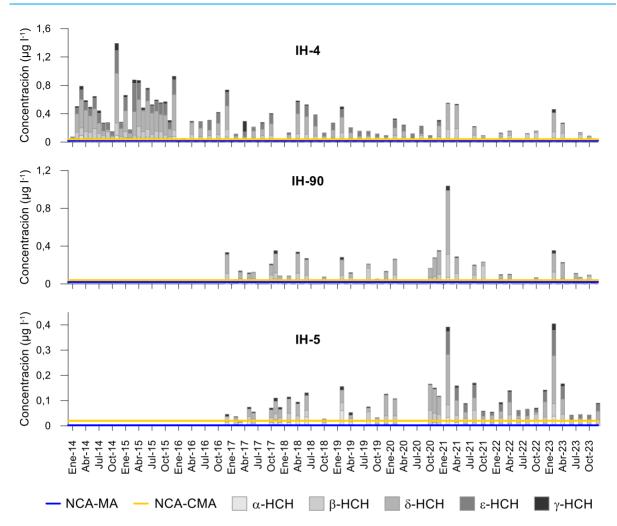


Figura 16 Evolución de las concentraciones de cada congénere de HCH en las aguas muestreadas en las estaciones IH-5, IH-90 e IH-4, en la zona del Ballonti, entre 2014 y 2023. En las fechas en las que se muestreó en dos estados de marea se representa el valor promedio. NCA: norma de calidad ambiental; MA: media anual; CMA: concentración máxima anual.

En este ámbito, se ha estudiado la <u>influencia de la marea</u> en el punto localizado en aguas de transición (IH-5), entre 2017 y 2020, dado que desde 2021 sólo se ha muestreado en bajamar. En la Figura 17 se observa que las concentraciones en bajamar son superiores a las de pleamar, aunque hay algunas fechas con concentraciones similares en pleamar y bajamar, lo que podría estar relacionado con aportes puntuales del vertedero de las Canteras situado aguas arriba del IH-5.

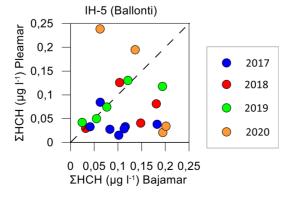


Figura 17 Concentración de ΣHCH (μg l·¹) en pleamar y bajamar en los muestreos realizados entre 2017 y 2020. Cada punto representa una fecha de muestreo. La línea discontinua representa la relación 1:1.

3.6. NERBIOI EXTERIOR Y LITORAL DEL IBAIZABAL

La localización de las <u>estaciones de muestreo</u> de aguas del Nerbioi exterior y litoral del Ibaizabal se presenta en la Figura 18 y la Tabla 26. Se corresponde con un total de dos estaciones asociadas a aguas costeras y dos estaciones en la masa de agua de transición Nerbioi Exterior.

Tabla 26 Estaciones de muestreo de aguas. Nerbioi exterior y litoral del Ibaizabal. * Estaciones en las que también se ha realizado muestreo de sedimentos en el periodo 2014-2023.

Zono	Cotogoría	Mass de agua	Fatasián	UTMX	UTMY	Drawasta
Zona	Categoría	Masa de agua	Estación	ETRS89	ETRS89	Proyecto
Nerbioi exterior	Aguas de	Nerbioi Exterior	E-N20*	497813	4798377	
Nerbioi exterior	transición	transición	E-N30*	496329	4800840	DOCETIVE
Literal	A guas contores	Cantabria-Matxitxako	L-N10*	493360	4803304	RSEETyC
Litoral	Aguas costeras	Cantabha-Matxitxako	L-N20*	498328	4805152	

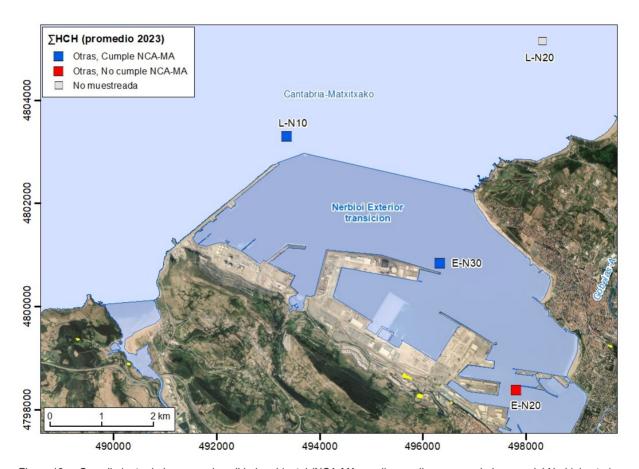


Figura 18 Cumplimiento de la norma de calidad ambiental (NCA-MA: media anual) en aguas de la zona del Nerbioi exterior, en 2023 para el ΣHCH. En la estación litoral L-N20, sólo se dispone de concentración de ΣHCH en 2014. Se indica en amarillo la localización de emplazamientos potencialmente contaminantes.

Los resultados obtenidos en la matriz <u>agua</u> en los muestreos de 2023 en estas estaciones se presentan en el Anexo (Tabla A8). En la Tabla 27 se presenta, para el periodo 2014-2023, la evolución anual del cumplimiento de las normas de calidad establecidas para el HCH (Tabla 2).

En 2023, la estación E-N20 del Abra exterior del estuario del Ibaizabal no alcanzan el buen estado químico por ΣHCH, al superar la NCA-MA y NCA-CMA establecidas. La mayor afección del HCH en esta zona se observa en la estación más interna (E-N20), mientras en la zona litoral, donde se dispone de datos en 2014, 2020, 2022 y 2023 en la estación L-N10, no se superan las normas establecidas.

Los valores anuales de ΣHCH obtenidos en las aguas muestreadas en la estación E-N30 indican que en 2023 alcanza el buen estado químico, no habiendo alcanzado el buen estado en el tramo exterior del eje principal del estuario al superar las NCA para ΣHCH en 2015, 2019, 2021 y 2022.

La estación E-N20, al encontrarse en una zona más interior y abrigada, presenta mayor influencia de los aportes de los ríos, y sus aguas no cumplen con la NCA-MA (2014-2023) y, en algunos años (2014, 2016-2018, 2021-2023), tampoco cumplen la NCA-CMA (Tabla 27 y Figura 18). Las concentraciones observadas son del mismo orden de magnitud que las observadas en la estación E-N17, localizada en la zona del Gobela.

En las estaciones litorales L-N10 y L-N20 se midieron los congéneres de HCH en aguas hasta 2014, año en el que todos los valores se encontraban por debajo de límite de cuantificación. En 2013, solo se realizó un muestreo en el que se determinó HCH (α y γ -HCH); el sumatorio de las concentraciones de los congéneres analizados no alcanzó la NCA-MA para Σ HCH. En las campañas realizadas durante los años 2002-2006 el 94,5% de los resultados fueron inferiores al límite de cuantificación. Posteriormente, se realizó un muestreo de aguas en la estación L-N10 en 2020 y los resultados obtenidos estuvieron por debajo del límite de cuantificación, al igual que en los muestreos trimestrales realizados en 2022 y 2023.

Tabla 27 Evolución del cumplimiento de las normas de calidad ambiental (NCA) de ΣHCH (μg I⁻¹) entre 2014 y 2023, en las aguas muestreadas en las estaciones del Nerbioi exterior y litoral del Ibaizabal. Se presenta el valor medio anual (MA) y el máximo anual (CMA) junto al número de muestras disponibles para cada año. Para el cálculo del sumatorio de los congéneres (ΣHCH), aquellos valores inferiores al límite de cuantificación (LC) se han considerado 0. Ver límites de cuantificación en página 9. C: cumple, NC: no cumple.

Categoría	Masa de agua	Estación	Año	Nº muestras	ΣHCH promedio	ΣHCH máximo	NCA-MA	NCA-CMA
			2014	12	0,0076	0,0281	NC	NC
			2015	12	0,0061	0,0162	NC	С
			2016	12	0,0075	0,0272	NC	NC
			2017	12	0,0102	0,0202	NC	NC
		E-N20	2018	11	0,0151	0,0308	NC	NC
		E-INZU	2019	12	0,0092	0,0187	NC	С
			2020	11	0,0090	0,0168	NC	С
			2021	12	0,0116	0,0279	NC	NC
	Nerbioi / Nervión		2022	12	0,0134	0,0271	NC	NC
Aguas de	Exterior		2023	12	0,0110	0,0230	NC	NC
transición	Transición		2014	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
	Transicion		2015	1	0,0048	0,0048	NC	С
			2016	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2017	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		E-N30	2018	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		E-1430	2019	1	0,0065	0,0065	NC	С
			2020	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
			2021	4	0,0169	0,0670	NC	NC
			2022	8	0,0025	0,0070	NC	С
			2023	8	0,0013	0,0030	С	С
			2014	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Aguas	Cantabria-	L-N10	2020	1	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
Aguas costeras	Cantabna- Matxitxako	L-IN IU	2022	4	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
COSICIAS	IVIAINIXAKU		2023	4	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С
		L-N20	2014	4	<lc< td=""><td><lc< td=""><td>С</td><td>С</td></lc<></td></lc<>	<lc< td=""><td>С</td><td>С</td></lc<>	С	С

Los <u>isómeros</u> α y δ -HCH predominan en la estación E-N20, con una representación media del 33 y 32%, respectivamente, con respecto al HCH total (Tabla 28). En E-N30, α , β y δ -HCH tienen una representación del 14-45%. En el caso del lindano (γ -HCH), la abundancia relativa es de 7% en la estación E-N20, igual que la observada en el punto de transición del Asua (HCH-7; 7%), menor que la observada a lo largo del eje principal del estuario en las estaciones E-N15 (8%) y E-N17 (9%), e incluso

en los puntos de transición de la cuenca del Galindo (HCH-18;10%) y del Ballonti (IH-5; 9%), pero similar al punto de transición del Gobela (HCH-19; 5%).

Tabla 28 Promedio de los porcentajes de representación de cada isómero con respecto al ΣHCH en cada una de las estaciones del Nerbioi exterior y litoral del Ibaizabal, para el periodo 2014-2023.

ESTACION	α-НСН	β-нсн	δ-нсн	ε-НСН	γ-НСН
E-N20	33	19	32	9	7
E-N30	45	14	36	3	1

En la estación E-N20 se dispone de resultados mensuales desde enero de 2014 hasta diciembre de 2023, lo que permite estudiar la **variabilidad intermensual**. En esta estación no se observa un patrón intra-anual definido (Figura 19).

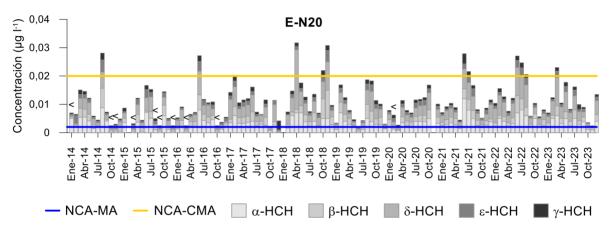


Figura 19 Evolución de las concentraciones de cada congénere de HCH en las aguas muestreadas en la estación E-N20, en la zona del Nerbioi exterior, entre 2014 y 2023. Con el signo '<' se señalan las fechas en las que todos los congéneres analizados están por debajo del límite de cuantificación. En las fechas en las que se muestreó en dos estados de marea se representa el valor promedio. NCA: norma de calidad ambiental; MA: media anual; CMA: concentración máxima anual.

En el ámbito Nerbioi exterior y litoral del Ibaizabal también se dispone de datos de concentración de HCH en <u>sedimentos</u>, aunque no todas las estaciones se han muestreado con la misma periodicidad y no todos los años se han analizados los mismos congéneres de HCH (Tabla 29).

Tabla 29 Resumen de los datos de ΣHCH disponibles en los sedimentos muestreados en el ámbito Nerbioi exterior y litoral del Ibaizabal. (ver nota 7 de Tabla 6)

Zona	Estación	nº muestreos (años)	Congéneres analizados	Nº datos de ΣHCH <lc< th=""></lc<>
Abra	E-N20	32 muestreos (1995-2023)	1995-2016: α, γ 2017-2023: α, β, δ, ε, γ	14 (44 %)
exterior	E-N30	31 muestreos (1995-2008, 2010-2023)	1995-2016: α, γ 2017-2023: α, β, δ, ε, γ	26 (84 %)
Litaral	L-N10	29 muestreos (1995-2020)	1995-2016: α, γ 2017-2020: α, β, δ, ε, γ	25 (86%)
Litoral	L-N20	29 muestreos (1995-2020)	1995-2016: α, γ 2017-2020: α, β, δ, ε, γ	22 (76%)

El ΣHCH en sedimentos de las estaciones E-N20 y E-N30 (Nerbioi exterior) es inferior al límite de cuantificación en un 44% y 84% de los casos, respectivamente, en el período 1995-2023 (Tabla 29). Las concentraciones de HCH en la estación E-N20 desde 2006 se presentan, fundamentalmente, como α-HCH (0,2-20 μg kg⁻¹), siendo inferiores para γ -HCH (lindano, 0,2-1,9 μg kg⁻¹), y las concentraciones máximas se encontraron entre 2011 y 2017. En 2023 las concentraciones de los diferentes isómeros se encuentran por debajo del límite de cuantificación (Anexo, Tabla A9).

4.

Conclusiones

La evaluación conjunta de los datos presentados en este informe permite determinar la existencia de impactos derivados de la contaminación por hexaclorociclohexano en las masas de agua de transición Nerbioi interior y Nerbioi exterior, y en parte de sus tributarios.

Esta contaminación tiene su origen en el depósito incontrolado de residuos de fabricación de lindano realizado por dos plantas de producción de este pesticida implantadas en el País Vasco a finales de los años cuarenta y principios de los cincuenta del pasado siglo. Durante las décadas de los 80 y 90 el Gobierno Vasco realizó un importante trabajo de inventariado de los puntos de vertido, que culminó con el saneamiento de casi todos ellos, y el confinamiento o tratamiento de los residuos y tierras contaminadas relacionados. Sin embargo, en este estudio queda evidenciado que persisten aún determinados focos que determinan un impacto comprobado por el incumplimiento de normas de calidad correspondientes a ΣΗCH.

Los principales focos de contaminación son:

- en la cuenca del Ballonti el principal foco de contaminación identificado es la escombrera Etxe-Uli, sin descartar la posible influencia de otros vertederos (vertederos de La Sia, Rivas Viejo y el vertedero de la Canteras). Estos focos determinan la superación de normas de calidad ambientales para ΣHCH en estaciones situadas en aguas de transición cercanas al Ballonti (IH-5) y en la mayoría de las estaciones del río (desde BAL11 a IH-5). En la actualidad, por parte de su titular actual, se está trabajando en un proyecto para la recuperación de la escombrera Etxe-Uli.
- en la cuenca del Asua los principales focos de contaminación son el antiguo vertedero de Artxanda y los suelos contaminados en las inmediaciones de los terrenos en los que se situaba la fábrica de lindano Nexana S.A. dedicada a la fabricación de lindano entre 1952 y 1982, determinando la superación de normas de calidad ambientales para ΣHCH en estaciones situadas en aguas de transición cercanas al Asua (IH-1, HCH-6 y HCH-7) y la del área de drenaje a esta masa de agua (estación CAM-01). Son especialmente altas las concentraciones de ΣHCH en la estación IH-1, junto al vertedero de la antigua empresa de Nexana S.A.
- en la cuenca del Galindo los posibles focos que se manifiestan en el entorno de Zuloko, con focos de contaminación localizados entre las estaciones HCH-15 y HCH-16. Se detecta superación de normas de calidad ambientales para ΣHCH en las estaciones situadas en aguas de transición cercanas al Galindo, que siendo menores que en el 2022 siguen siendo notables en HCH-15 en 2023, con concentraciones hasta 5 veces superiores a NCA-CMA, y hasta 28 veces superiores a NCA-MA.

Conclusiones 43

 en el ámbito del Gobela, a pesar de detectarse concentraciones significativas de ΣHCH en la estación LL01 (punto de control del lixiviado del vertedero de Lleuri, bajo el centro comercial Artea, inventariado como emplazamiento potencialmente contaminante), su afección no se evidencia en superaciones de norma de calidad en las estaciones situadas aguas abajo, probablemente por dilución.

En el ámbito de otros tributarios, **Ibaizabal, Nerbioi y Kadagua** se diagnostica buen estado químico por ΣHCH.

En el **eje principal del estuario** en 2023 se superan las normas de calidad desde E-N15 (Barakaldo: Puente de Rontegi) hasta E-N20 (Abra Interior), dándose las concentraciones medias más elevadas en las estaciones E-N15 (Barakaldo, puente de Rontegi) y E-N17 (Leioa, Lamiako). En el periodo 2014-2023 también se dan frecuentes superaciones de las normas de calidad, sobre todo en las estaciones centrales E-N15 (excepto en 2015), E-N17, E-N20 (Abra Interior) y E-N30 (en 2015, 2019, 2021 y 2022). Estas superaciones de norma se corresponden con concentraciones generalmente menores a las observadas en las estaciones más cercanas de las zonas del Asua (HCH-7), Galindo (HCH-18) o Ballonti (IH-5). Este hecho puede relacionarse con el efecto dilución del propio estuario en la carga proveniente de los ríos tributarios.

En la serie temporal 2014-2023, en las **estaciones litorales** se dispone de información en 2014 y en L-N10 (Litoral del Abra, Frente al Superpuerto) también de 2020, 2022 y 2023. Los resultados obtenidos permiten diagnosticar buen estado químico por ΣHCH, lo que es acorde a su localización, alejada del estuario.

Respecto a la **variabilidad intradía** de ΣHCH en aguas, estudiada entre 2017 y 2020 (desde 2021 sólo se ha muestreado en bajamar), se observan concentraciones en bajamar generalmente superiores a las de pleamar, acorde al efecto de dilución del agua de origen marino. Sin embargo, en algunos puntos cercanos a focos potencialmente contaminantes (HCH-15 y IH-1), esta dilución en pleamar no es tan evidente.

En lo que respecta a la **variabilidad intra-anual** de ΣHCH en aguas, no existe un patrón generalizado, y cuando se observa un patrón estacional, está poco definido, excepto en la estación IH-2 (Asua). Del análisis de la variabilidad intradía (pleamar/bajamar) e intra-anual realizado se recomienda que el control mínimo de ΣHCH en aguas se debe asociar a bajamar y a estiaje.

La concentración de ΣHCH observada en **sedimentos** generalmente se encuentra por debajo de los correspondientes límites de cuantificación, mostrando en cierta medida valores estables.

La concentración de ΣHCH observada en **biota** generalmente se encuentra por debajo de los correspondientes límites de cuantificación. La posible variabilidad puntual de los datos positivos podría deberse a las diferentes especies muestreadas que varían según el periodo de muestreo.

En los últimos años se está trabajando en la localización de focos de contaminación responsables del actual mal estado químico por el incumplimiento de normas de calidad correspondientes a ΣHCH. Para ello se están estableciendo nuevas estaciones de control de aguas para una mejor localización de esos focos, de manera que permitan posteriormente diseñar y ejecutar actuaciones de descontaminación.

.

Bibliografía

- IHOBE, 2016. Inventario de suelos que soportan o han soportado actividades o instalaciones potencialmente contaminantes del suelo. Cartografía de 2021 disponible en: https://www.geo.euskadi.eus/cartografia/DatosDescarga/Medio_Ambiente/Suelos_Contaminados/ (consulta realizada el 10-05-2022)
- Larreta, J., O. Solaun, I. Menchaca, J.G. Rodríguez, V. Valencia y A. Borja, 2013. Estudio de la contaminación por hexaclorociclohexano en el estuario del Ibaizabal y sus principales tributarios. Elaborado por AZTI-Tecnalia para URA e IHOBE. 51 pp.
- Larreta, J., O. Solaun, J.G. Rodríguez e I. Menchaca, 2016. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final. Enero 2014 Diciembre 2015. Elaborado por AZTI-Tecnalia para URA. 31 pp.
- Larreta, J., O. Solaun, J.G. Rodríguez e I. Menchaca, 2017. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final (2016). Elaborado por AZTI-Tecnalia para URA. 22 pp.
- Larreta, J., J.G. Rodríguez, I. Menchaca y O. Solaun, 2018. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final (2017). Elaborado por AZTI para URA. 29 pp. https://www.uragentzia.euskadi.eus/contenidos/informacion/seguimiento_informes_previos/es_def/adjuntos/FINAL_HCH_2017.pdf
- Larreta, J., O. Solaun, J.G. Rodríguez e I. Menchaca, 2019. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final (2018). Elaborado por Fundación AZTI Fundazioa para URA. 48 pp. https://www.uragentzia.euskadi.eus/contenidos/informacion/seguimiento_informes_previos/es_def/adjuntos/Informe_FINAL_HCH_2018.pdf
- Larreta, J., O. Solaun, J.G. Rodríguez e I. Menchaca, 2020. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final (2019). Elaborado por Fundación AZTI Fundazioa para URA. 43 pp. https://www.uragentzia.euskadi.eus/contenidos/informacion/seguimiento_informes_previos/es_def/adjuntos/Informe-FINAL-HCH_2019.pdf
- Larreta, J., O. Solaun, J.G. Rodríguez e I. Menchaca, 2021. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final (2020). Elaborado por AZTI para URA. 46 pp. https://www.uragentzia.euskadi.eus/contenidos/informacion/seguimiento_ultimos_informes/es_def/adjuntos/Informe-FINAL-HCH_IBAIZABAL_2020.pdf
- Larreta, J., J.G. Rodríguez y O. Solaun, 2022. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano). Informe Final (2021). Elaborado por AZTI para URA. 48 pp. https://www.uragentzia.euskadi.eus/contenidos/informacion/seguimiento ultimos informes/es

Bibliografía 45

def/adjuntos/Informe-FINAL-HCH 2021.pdf

Larreta, J., I. Zorita y O. Solaun, 2023. Estudio de contaminantes específicos en el entorno de la masa de agua de transición del Ibaizabal (Hexaclorociclohexano Informe Final (2022). Elaborado por AZTI para URA. 50 pp. https://www.uragentzia.euskadi.eus/webura00-contents/es/contenidos/informacion/seguimiento ultimos informes/es def/adjuntos/Informe-FINAL-HCH 2022.pdf

46 Bibliografía

Tabla A1 Resultados 2023. Concentraciones (µg I-1) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Ibaizabal y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg I-1). 8

Categoría	Masa	Estación	Fecha	α-ΗСΗ	β-НСН	δ-НСН	ε-НСН	g-HCH	ΣΗCΗ	NCA- MA	NCA- CMA
			13/2/2023-B	0,0014	<0,0005	0,0009	<0,0005	<0,0005	0,0023	NC	С
			22/3/2023-B	0,0013	0,0007	0,0014	<0,0005	<0,0005	0,0034	NC	С
			25/5/2023-B	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
Aguas de	Nervión	E-N10	7/6/2023-B	0,0012	0,0007	0,0009	<0,0005	0,0005	0,0033	NC	С
transición	Interior	⊏- IN IU	23/8/2023-B	0,0013	<0,0005	<0,0005	<0,0005	<0,0005	0,0013	С	С
			20/9/2023-B	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
			20/11/2023-B	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
			14/12/2023-B	<0,002	<0,002	<0,002	<0,002	<0,002	0,0000	С	С
			26/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			27/2/2023	<0,001	<0,001	<0,001	na		0,0000	С	С
			30/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			26/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	Río	IBA194	28/6/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	Ibaizabal II	IDA 194	20/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			30/8/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			27/9/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			18/10/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			29/11/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			20/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			26/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			27/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			30/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			26/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
Ríos	Río	IBA306	28/6/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
Rios	Ibaizabal III	IDASUU	20/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			30/8/2023	<0,001	0,0014	<0,001	na	<0,001	0,0014	С	С
			27/9/2023	<0,001	0,0013	<0,001	na	<0,001	0,0013	С	С
			18/10/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			29/11/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			20/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			23/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			29/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			24/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	Río	IBA518	27/6/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	Nervión II	וטרטוס	19/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			29/8/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			26/9/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			23/10/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			28/11/2023	<0,001	<0,001	<0,001	na		0,0000	С	С
			19/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С

⁸ C: cumple la NCA; NC: no cumple la NCA. En el caso del sumatorio de los cinco congéneres el color del fondo indica si se supera la NCA-MA (amarillo), la NCA-CMA (rojo) o ninguna (azul); na: no analizado. En algunas estaciones no se ha analizado el isómero ε-HCH, por lo que la evaluación del cumplimiento de las normas de calidad referidas al sumatorio de HCH debe de realizarse con precaución. En aquellas estaciones muestreadas en dos situaciones de marea se indica en la fecha de muestreo si fue realizado en bajamar (B) o pleamar (P). Para el sumatorio de los congéneres (∑HCH), aquellos valores inferiores al límite de cuantificación se han considerado 0.

Tabla A2 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Nerbioi y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН	ε-ΗСΗ	g-HCH	ΣΗCΗ	NCA-MA	NCA-CMA
			25/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			23/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			30/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			24/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	Río Izorio	NIZ106	27/6/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	KIO IZONO	INIZIOO	19/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			29/8/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000		С
			26/9/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			23/10/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			28/11/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			19/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/1/2023				na		0,0000		С
	Río Nervión I		23/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000		С
			30/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			25/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000		С
			24/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000		С
		I NER258	27/6/2023				na	<0,001	0,0017		С
	KIO NEI VIOITI		19/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			29/8/2023	<0,001			na		0,0000		С
Ríos			26/9/2023	<0,001			na	0,0080			С
			23/10/2023				na	<0,001		С	С
			28/11/2023	<0,001	<0,001	<0,001	na		0,0000		С
			19/12/2023				na		0,0029		С
			25/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000		С
			23/2/2023		<0,001	<0,001	na		0,0000		С
		NER338	29/3/2023		<0,01	<0,01	na		0,0000		С
			25/4/2023				na	<0,001	0,0000		С
			24/5/2023				na	<0,001			С
			25/1/2023				na	<0,001			С
			23/2/2023				na	<0,001			С
			29/3/2023				na		0,0000		С
	Río Nervión II		25/4/2023	<0,001	<0,001	<0,001	na	<0,001			С
			24/5/2023				na	<0,001		С	С
		NER520	27/6/2023				na		0,0000		С
		14611020	19/7/2023	<0,001			na		0,0000		С
			29/8/2023	<0,001			na		0,0000		С
				<0,001			na	0,0034			С
			23/10/2023				na	0,0013		·	С
			28/11/2023				na		0,0000		С
			19/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С

Tabla A3 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Kadagua y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA- MA	NCA- CMA							
			25/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
	Río Kadagua IV k		23/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
			29/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
			25/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
			24/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
Ríos		K V D E O 4	27/6/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
Kios	Nio Nauagua IV	KAD304	19/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
			29/8/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
		2	ı	ı						26/9/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			23/10/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
			28/11/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							
			19/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С							

Tabla A4 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Asua y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

Part	Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA- MA	NCA- CMA
Aguas de transición Nervión Interior HCH-7 28/2023-B 0.000 0.00				7/2/2023-B	0,0210	0,0190	0,0400	0,0080	0,0100	0,0980	NC	NC
Part				3/4/2023-B	0,0400	0,0120	0,0230	0,0060	0,0040	0,0850	NC	NC
Page				21/6/2023-B	0,0500	0,0240	0,1200	0,0270	0,0180	0,2390	NC	NC
Aguas de Interior HCH-7 17/12/2023-B 0.0140 0.0080 0.0220 0.0080 0.0850 NC NC NC 17/12/2023-B 0.0400 0.0140 0.0900 0.0180 0.0180 0.2150 NC NC NC 17/10/2023-B 0.0700 0.0190 0.0900 0.0180 0.0230 0.3140 NC NC NC 17/10/2023-B 0.0190 0.0400 0.0800 0.0330 0.0710 NC NC NC 17/10/2023-B 0.0900 0.0400 0.0180 0.0330 0.0800 NC NC NC 17/10/2023-B 0.0900 0.0400 0.0180 0.0330 0.0800 NC NC NC NC 17/10/2023-B 0.0900			IH-1	2/8/2023-B	0,1300	0,0600	0,2100	0,0700	0,0360	0,5060	NC	NC
Aguas de Nervión Interior					0,1000	0,0500	0,1600	0,0600	0,0270	0,3970	NC	
Aguas de Interior HCH-7 HCH-8 34/2023-B 0.0400 0.0140 0.0920 0.0120 0						0,0080	0,0220	0,0060	0,0060	0,0530		
Aguas de transición Interior HCH-7 (1972) Aguas de transición Interior HCH-7 (1972) Aguas de transición Interior HCH-7 (1972) Aguas de transición Interior HCH-7 (1972) Aguas de transición Interior HCH-7 (1972) Aguas de transición Interior HCH-7 (1972) Aguas de transición HCH-7 (1972				7/2/2023-B		0.0140	0.1200	0.0120	0.0220	0.2080		
Aguas de transición Interior					0.0700	0.0190	0.0900	0.0180	0.0160	0.2130	NC	NC
Aguas de Nervión Interior 1860 18					0.0700	0.0310	0.1400	0.0500	0.0230	0.3140	NC	
Aguas de transición Interior HCH-7			HCH-6	2/8/2023-B	0.1600	0.0400	0.1800	0.0600	0.0310	0.4710		
Aguas de transición interior i				17/10/2023-B	0.0500	0.0370	0.0900	0.0400	0.0160	0.2330	NC	NC
Aguas de transición Interior HCH-7						0.0150	0.0400	0.0130	0.0060			
transición Interior HCH-7	Aguas de	Nervión					0.1500			0.2550		
HCH-7 21/6/2023-B 0,0500 0,0500 0,0160 0,0060 0,0210 0,0260	•				0.0700							
Pich-1 2/8/2023-B 0,050 0,028 0,1300 0,0400 0,0210 0,2690 N.C. N.C.								-,				
Part			HCH-7		-,							
May						-,	0,1000		-,			
Baizabal drenaje transición CAM01_MOD							0,0230					
E-N15 E-					-,	-,		,	-,	0,000		_
E-N15												
E-N15												
Part							-,-			0,00==		_
Otras Ibaizabal drenaje transición CAM01_MOD CA			E-N15		.,	-,	- ,					
Otras						-,		-				
Otras Ibaizabal drenaje transición CAM01								- /	-	_		
Otras												
Otras						•			-,			
Otras					,							
Otras			CAM01		•		-					
Otras transición CAM01_MOD CAM01_MO		Ibaizabal										
Ríos Asua-A ASU160 Ríos Asua-A Tansición CAM01_MOD CAM01_	Otras	drenaje										_
Ríos Asua-A ASU160 CAMOI_MOD 2/8/2023 <0,001 0,0050 <0,001										-		_
ASU150 ASU4023 ASU150 ASU40203 ASU4001 ASU40000 ASU4000000000000000000000000000000000000			CAM01 MOD			-,				-		_
ASU150 ASU160 ASU160			_									
ASU150 ASU160 ASU160	$\overline{}$				-,							
ASU150 2/8/2023 <0,001 <0,001 <0,001 na												
Ríos Asua-A ASU160 Trivito Tri			ASU150				<u> </u>					
Ríos Asua-A ASU160 Asua-A ASU160 Asua-A ASU160 Asua-A ASU160 Asua-A A						, , , , , , , , , , , , , , , , , , , ,	'		- /			_
Ríos Asua-A ASU160 ASU160 Ríos ASU160 Ríos ASU160 ASU160 Ríos ASU160 Ríos ASU160 A												
Ríos Asua-A ASU160 ASUa-A Asua-A								na				
Ríos Asua-A ASU160 A												
ASU160 Asua-A As								na				
Ríos Asua-A ASU160 27/6/2023 0,0204 0,0236 0,0034 0,0037 0,0002 0,0474 NC NC 2/8/2023 0,0356 0,0571 0,0037 0,001 0,0964 NC NC 29/8/2023 0,0119 0,0482 0,0001 0,0362 NC C 26/9/2023 0,0119 0,0482 0,0003 0,0010 0,0362 NC NC 17/10/2023 0,0052 0,0247 0,0896 0,001 0,001 0,0035 NC NC 28/11/2023 0,0013 0,0022 0,001 0,0037 0,0035 0,0037 0,0037 0,0035 NC NC 19/12/2023 0,0015 0,0022 0,0149 0,001 0,0037 0,0035 NC C 19/12/2023 0,0015 0,0012 0,0149 0,001 0,0037 0,0038 NC C 17/2/2023 0,0018 0,001 0,001 0,001 0,0000 C C 17/10/2023 0,0018 0,001 0,001 0,001 0,0010								na				
Ríos Asua-A Asua-A Asua-A 2/8/2023 0,0356 0,0571 0,0037 na <0,001 0,0964 NC NC								na				_
Ríos Asua-A			ASU160					na				
RIOS ASUA-A 26/9/2023 0,0119 0,0482 0,0030 na <0,001 0,0631 NC NC 17/10/2023 0,0052 0,0247 0,0896 na 0,0010 0,1205 NC NC 28/11/2023 0,0013 0,0022 <0,001 na <0,001 0,0035 C C 19/12/2023 0,0055 0,0022 0,0149 na 0,0037 0,0263 NC C 19/12/2023 <0,001 <0,001 na <0,001 0,0000 C C 7/2/2023 0,0018 <0,001 <0,001 na <0,001 0,0000 C C 3/4/2023 0,0018 <0,001 <0,001 na <0,001 0,0008 C C 17/10/2023 0,0020 <0,001 <0,001 na <0,001 0,0020 C C 17/10/2023 0,0042 0,0146 0,0101 na <0,001 0,0020 C C 17/10/2023 0,0042 0,0146 0,0101 na <0,001 0,0289 NC C 7/2/2023 0,1237 0,5185 0,0403 na 0,0125 0,6950 NC NC 3/4/2023 0,2196 0,7479 0,0414 na 0,0099 1,0188 NC NC 2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC			/.00100									
17/10/2023	Ríos	Δςμα-Δ						na				
28/11/2023 0,0013 0,0022 <0,001 na <0,001 0,0035 C C 19/12/2023 0,0055 0,0022 0,0149 na 0,0037 0,0263 NC C C C C C C C C	11103	/ ISUA-/A						na				
IPI01 19/12/2023 0,0055 0,0022 0,0149 na 0,0037 0,0263 NC C								na			NC	_
IPI01								na				С
IPI01 3/4/2023 0,0018 <0,001 <0,001 na <0,001 0,0018 C C 2/8/2023 0,0020 <0,001 <0,001 na <0,001 0,0020 C C 17/10/2023 0,0042 0,0146 0,0101 na <0,001 0,0289 NC C 7/2/2023 0,1237 0,5185 0,0403 na 0,0125 0,6950 NC NC 3/4/2023 0,2196 0,7479 0,0414 na 0,0099 1,0188 NC NC 2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC								na				С
2/8/2023 0,0020 <0,001 <0,001 na <0,001 0,0020 C C								na				
OST01 2/8/2023 0,0020 <0,001 <0,001 na <0,001 0,0020 C C 17/10/2023 0,0042 0,0146 0,0101 na <0,001 0,0289 NC C 7/2/2023 0,1237 0,5185 0,0403 na 0,0125 0,6950 NC NC 3/4/2023 0,2196 0,7479 0,0414 na 0,0099 1,0188 NC NC 2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC			IDIO1	3/4/2023				na	<0,001	0,0018	С	С
OST01 17/10/2023 0,0042 0,0146 0,0101 na <0,001 0,0289 NC C 7/2/2023 0,1237 0,5185 0,0403 na 0,0125 0,6950 NC NC 3/4/2023 0,2196 0,7479 0,0414 na 0,0099 1,0188 NC NC 2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC			IFIUI	2/8/2023				na	<0,001	0,0020	С	С
OST01 7/2/2023 0,1237 0,5185 0,0403 na 0,0125 0,6950 NC NC NC 3/4/2023 0,2196 0,7479 0,0414 na 0,0099 1,0188 NC NC NC 2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC								na				С
OST01 3/4/2023 0,2196 0,7479 0,0414 na 0,0099 1,0188 NC NC 2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC							1	na				NC
2/8/2023 0,3447 1,8110 <0,2 na 0,0260 2,1817 NC NC			00704				0,0414					NC
			05101				<0,2					
				17/10/2023	0,4800	0,7700	0,1650	na	0,0203	1,4353		NC

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН					
			7/2/2023	0,1177	0,4924	0,0374	na	0,0114	0,6589	NC	NC
		11.0	3/4/2023	0,1419	0,6087	0,0341	na	0,0099	0,7946	NC	NC
		IH-2	2/8/2023	0,7340	1,0509	0,1756	na	0,0191	1,9796	NC	NC
			17/10/2023	0,4550	0,7250	0,1800	na	0,0258	1,3858	NC	NC

Tabla A5 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Galindo y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-ΗСΗ	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA- MA	NCA- CMA
			7/2/2023-B	0,0090	0,0018	0,0021	0,0010	0,0005	0,0144	NC	С
			3/4/2023-B	0,0220	0,0090	0,0110	0,0500	0,0012	0,0932	NC	NC
		1101145	21/6/2023-B	0,0130	0,0110	0,0010	0,0010	<0,0005	0,0260	NC	NC
		HCH-15	2/8/2023-B	0,0600	0,0220	0,0120	0,0100	0,0031	0,1071	NC	NC
			17/10/2023-B	0,0190	0,0180	0,0050	0,0260	0,0015	0,0695	NC	NC
			13/12/2023-B	0,0150	0,0080	0,0050	0,0040	<0,0025	0,0320	NC	NC
			7/2/2023-B		0,0200	0,0150	0,0090	0,0031	0,0711	NC	NC
			3/4/2023-B	0,0700	0,0390	0,0190	0,0140	0,0060	0,1480	NC	NC
		1101140	21/6/2023-B		0,0190			0,0070	0,1100	NC	NC
		HCH-16	2/8/2023-B		0,0800				0,2660	NC	NC
			17/10/2023-B	0,0900	0,0900	0,0180	0,0200	0,0100	0,2280	NC	NC
Aguas de			13/12/2023-B	0,0500	0,0700	0,0270	0,0230	0,0050	0,1750	NC	NC
transición	Nervión Interior		7/2/2023-B		0,0230	0,0340	0,0170	0,0090	0,1330	NC	NC
			3/4/2023-B	0,0310	0,0250	0,0090	0,0090	0,0100	0,0840	NC	NC
		1101140	21/6/2023-B	0,0700	0,0100	0,0070	0,0060	0,0034	0.0964	NC	NC
		HCH-18	2/8/2023-B	0,0600	0,0340	0,0150	0,0100	0,0060	0,1250	NC	NC
			17/10/2023-B					0,0050	0,1960	NC	NC
			13/12/2023-B		0,0220			<0,0025	0,0600	NC	NC
			7/2/2023-B		0,0380	0,0160		0,0034	0,0914	NC	NC
			3/4/2023-B		0,0500			0.0060	0.1510	NC	NC
			21/6/2023-B		0,0320			0,0070	0.1000	NC	NC
		HCH-22	2/8/2023-B				0.0320	0,0100	0.3110	NC	NC
			17/10/2023-B		0.1400			0.0110	0.3410	NC	NC
			13/12/2023-B			- /	0,0130	-,-	0,1301	NC	NC
		HCH-23	7/2/2023		<0,001		na	<0,001	0.0049	С	С
			3/4/2023		0,0098		na		0,0637	NC	NC
			2/8/2023		0,0101		na	0,0014	0.0476	NC	NC
			17/10/2023		0,0320		na	0,0022		NC	NC
			7/2/2023		<0,001		na		0.0000	С	С
			3/4/2023		<0.001		na		0.0000	С	С
		GAL090	2/8/2023		<0.001		na		0.0000	С	С
			17/10/2023		<0.001		na	<0,001	0,0000	С	С
			25/1/2023		<0.001		na	<0.001	0.0000	С	С
			7/2/2023		<0,001		na	<0.001	0,0000	С	С
			29/3/2023	<0,01	<0,01	<0,01	na	<0,01	0,0000	С	С
			3/4/2023		<0,001		na		0,0000	С	С
			24/5/2023			<0,001	na	<0.001	0,0021	С	С
_,			27/6/2023	<0.001	<0,001		na	<0.001	0,0000	С	С
Ríos	Galindo-A	GAL095	2/8/2023		<0,001		na		0,0012	С	С
					<0,001		na		0,0048	С	С
			26/9/2023		0,0011		na		0,0030	С	С
			17/10/2023		<0,001		na		0,0000	С	С
			28/11/2023		0,0067		na		0,0067	С	С
			19/12/2023		<0,001		na		0,0000	С	C
			10/1/2023		<0,001		na		0,0000	С	C
			6/2/2023		<0,001		na		0,0000	С	C
			6/3/2023		<0,001		na		0,0000	С	С
			3/4/2023		<0,001		na		0,0000	C	С
		OIO-EMB	15/5/2023		<0,001		na		0,0000	С	С
			14/6/2023		<0,001		na		0,0000	C	C
			19/7/2023		<0,001		na		0,0000		С
			18/9/2023		<0,001		na		0,0000	С	С
		ı	10,0,2020	J,001	0,001	- 0,00 1	i i u	3,001	0,0000		

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA- MA	NCA- CMA
			2/10/2023	<0.001	<0.001	<0.001	na	<0.001	0.0000		C
			13/11/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			4/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			10/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			6/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			6/3/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			3/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			15/5/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
		OIO-ESC1	14/6/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			19/7/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			4/9/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			2/10/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			13/11/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			4/12/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С

Tabla A6 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Gobela y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA- MA	NCA- CMA
			10/1/2023-B	0,0022	0,0026	0,0028	0,0013	0,0008	0,0097	NC	С
			13/2/2023-B	0,0100	0,0028	0,0110	0,0018	0,0021	0,0277	NC	NC
			22/3/2023-B	0,0110	0,0100	0,0170	0,0060	0,0029	0,0469	NC	NC
			18/4/2023-B	0,0080	0,0040	0,0130	0,0028	0,0020	0,0298	NC	NC
			25/5/2023-B	0,0050	0,0018	0,0060	0,0018	0,0017	0,0163	NC	С
Aguas de	Nervión Interior	E-N17	7/6/2023-B	0,0070	0,0050	0,0110	0,0032	0,0018	0,0280	NC	NC
transición	Nervion interior	□ =-IN I /	19/7/2023-B	0,0060	0,0032	0,0070	0,0021	0,0015	0,0198	NC	С
			23/8/2023-B	0,0050	0,0050	0,0050	0,0015	0,0009	0,0174	NC	С
			20/9/2023-B	0,0080	0,0040	0,0070	0,0027	0,0014	0,0231	NC	NC
			16/10/2023-B	0,0040	0,0034	0,0040	0,0017	0,0010	0,0141	NC	С
			20/11/2023-B	0,0031	<0,0005	0,0019	0,0014	0,0009	0,0073	NC	С
			14/12/2023-B	0,0035	0,0024	0,0050	0,0011	0,0012	0,0132	NC	С
			25/1/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			7/2/2023	<0,001	<0,001	0,0011	na	<0,001	0,0011	С	С
			29/3/2023	<0,001	0,0011	0,0023	na	<0,001	0,0034	С	С
			3/4/2023	<0,001	<0,001	0,0011	na	<0,001	0,0011	С	С
			24/5/2023	<0,001	0,0014	0,0023	na	<0,001	0,0037	С	С
		GOB082	27/6/2023	<0,001	0,0024	0,0045	na	<0,001	0,0069	С	С
		GODUOZ	2/8/2023	<0,001	<0,001	0,0013	na	<0,001	0,0013	С	С
			29/8/2023	<0,001	0,0025	0,0033	na	<0,001	0,0058	С	С
			26/9/2023	<0,001	<0,001	0,0013	na	<0,001	0,0013	С	С
Ríos	Gobela-A		17/10/2023	<0,001	0,0018	0,0026	na	<0,001	0,0044	С	С
Rios	Gobela-A		28/11/2023	<0,001	0,0016	<0,001	na	<0,001	0,0016	С	С
			19/12/2023		<0,001	<0,001	na	<0,001	0,0000	С	С
			7/2/2023	<0,001	<0,001	0,0010	na	<0,001	0,0010	С	С
		HCH-19	3/4/2023	<0,01	<0,01	<0,01	na	<0,01	0,0000	С	С
		HCH-19	2/8/2023	<0,001	<0,001	0,0067	na	<0,001	0,0067	С	С
			17/10/2023	0,0014	0,0036	0,0031	na	<0,001	0,0081	С	С
			7/2/2023	0,0188		0,0050	na	<0,001	0,0475	NC	NC
		LL01	3/4/2023	0,0162		0,0039	na	<0,001	0,0425	NC	NC
		LL01	2/8/2023	0,0215		0,0062	na	- /	0,0458	NC	NC
			17/10/2023	0,0160	0,0343	0,0196	na	<0,001	0,0699	NC	NC

Tabla A7 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Ballonti y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

	Masa	Estación	Fecha	α-НСН	β-НСН	δ-НСН	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA- MA	NCA- CMA
			7/2/2023-B	0,0380	0,0500	0,1900	0,1000	0,0270	0,4050	NC	NC
			3/4/2023-B	0,0170	0,0290	0,0600	0,0500	0,0110	0,1670	NC	NC
Aguas de	Nervión	IH-5	21/6/2023-B	0,0060	0,0110	0,0090	0,0140	0,0030	0,0430	NC	NC
transición	transición Interior	III-3	2/8/2023-B	0,0070	0,0160	0,0060	0,0140	0,0022	0,0452	NC	NC
			17/10/2023-B	0,0060	0,0190	0,0033	0,0130	0,0020	0,0433	NC	NC
			13/12/2023-B		0,0160	0,0350	0,0270	0,0050	0,0900	NC	NC
			7/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
		BAL01	3/4/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
		DALUI	2/8/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
			17/10/2023	<0,001	0,0016	<0,001	na	<0,001	0,0016	С	С
			7/2/2023	0,0862	0,1041	0,3839	na	0,0676	0,6418	NC	NC
		BAL02	3/4/2023	0,0092	0,1212	0,0460	na	0,0078	0,1842	NC	NC
		BALU2	2/8/2023	0,0047	0,1402	<0,001	na	0,0062	0,1511	NC	NC
			17/10/2023	0,0034	0,1100	0,0148	na	0,0037	0,1319	NC	NC
		BAL11	7/2/2023	0,0233	0,2374	0,0201	na	0,0048	0,2856	NC	NC
			3/4/2023	0,0348	0,2538	0,0209	na	0,0040	0,3135	NC	NC
			2/8/2023	0,0080	0,1906	0,1651	na	0,0286	0,3923	NC	NC
			17/10/2023	0,0032	0,2500	0,0138	na	<0,001	0,2670	NC	NC
	اه جاه جاه		7/2/2023	<0,001	0,0012	<0,001	na	<0,001	0,0012	С	С
Otras	Ibaizabal	CAP01	3/4/2023	<0,001	0,0014	<0,001	na	<0,001	0,0014	С	С
Ollas	Drenaje transición	CAPUI	2/8/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С
	transicion		17/10/2023	<0,001	0,0104	<0,001	na	<0,001	0,0104	С	С
			7/2/2023	0,0438	0,0823	0,1951	na	0,0335	0,3547	NC	NC
		11.1.00	3/4/2023	0,0185	0,0383	0,1627	na	0,0094	0,2289	NC	NC
		IH-90	20/6/2023	0,0022	0,0159	0,0026	na	0,0013	0,0220	NC	С
			10/7/2023	0,0069	0,0537	0,0469	na	0,0064	0,1139	NC	NC
			2/8/2023	0,0039	0,0571	0,0085	na	0,0023	0,0718	NC	NC
			17/10/2023	0,0023	0,0800	0,0110	na	0,0019	0,0952	NC	NC
		IH-4	21/11/2023	0,0036	0,0103	0,0158	na	0,0026	0,0323	NC	С
			7/2/2023	0,0668	0,0772	0,2695	na	0,0492		NC	NC
			3/4/2023	0,0230	0,1002	0,1346	na	0,0135	0,2713	NC	NC
		1101144	2/8/2023	0,0043			na	0,0036	0,1383	NC	NC
		HCH-11	17/10/2023	0,0034	0,0640	0,0154	na	0,0032		NC	NC
			7/2/2023	<0,001	<0,001	<0,001	na	<0,001	0,0000	С	С

Tabla A8 Resultados 2023. Concentraciones (μg l-¹) para cada congénere de HCH en las aguas muestreadas en las estaciones de la zona del Abra exterior y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l-¹) (ver nota 8 de Tabla A1).

Categoría	Masa	Estación	Fecha	α-ΗСΗ	β-НСН	δ-ΗСΗ	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA-MA	NCA-CMA
			10/1/2023	0,0017	0,0018	0,0022	0,0007	0,0006	0,0070	NC	С
			13/2/2023	0,0050	0,0011	0,0050	0,0006	0,0007	0,0124	NC	С
			22/3/2023	0,0060	0,0035	0,0100	0,0022	0,0013	0,0230	NC	NC
			18/4/2023	0,0032	0,0019	0,0040	0,0008	0,0006	0,0105	NC	С
			25/5/2023	0,0050	0,0024	0,0070	0,0019	0,0015	0,0178	NC	С
		E-N20	7/6/2023	0,0023	0,0017	0,0030	0,0008	0,0005	0,0083	NC	С
		E-INZU	19/7/2023	0,0050	0,0030	0,0050	0,0020	0,0012	0,0162	NC	С
Varios do	Nontión	_	23/8/2023	0,0029	0,0013	0,0032	0,0007	0,0018	0,0099	NC	С
Aguas de transición			20/9/2023	0,0038	0,0017	0,0019	0,0009	0,0007	0,0090	NC	С
li al isicion	Exterior		16/10/2023	0,0011	0,0012	0,0008	<0,0005	<0,0005	0,0031	NC	С
			20/11/2023	0,0009	0,0008	<0,0005	<0,0005	<0,0005	0,0017	С	С
			14/12/2023	0,0040	0,0023	0,0050	0,0013	0,0009	0,0135	NC	С
			13/2/2023	0,0007	<0,0005	<0,0005	<0,0005	<0,0005	0,0007	С	С
			22/3/2023	<0,0005	<0,0005	0,0005	<0,0005	<0,0005	0,0005	С	С
		E-N30	25/5/2023	0,0013	<0,0005	0,0016	<0,0005	<0,0005	0,0029	NC	С
			7/6/2023	0,0005	<0,0005	0,0006	<0,0005	<0,0005	0,0011	С	С
			23/8/2023	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-ΗСΗ	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA-MA	NCA-CMA
			20/9/2023	0,0010	0,0005	0,0007	<0,0005	<0,0005	0,0022	NC	С
			20/11/2023	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
			14/12/2023	0,0011	0,0011	0,0008	<0,0005	<0,0005	0,0030	NC	С

Tabla A9 Resultados 2023. Concentraciones (μg l⁻¹) para cada congénere de HCH en las aguas muestreadas en la estación de la zona costera de Cantabria-Matxitxako y evaluación del cumplimiento de las normas de calidad ambiental (NCA) establecidas para el ΣHCH (μg l⁻¹) (ver nota 8 de Tabla A1).

Categoría	Masa	Estación	Fecha	α-НСН	β-НСН	δ-ΗСΗ	ε-ΗСΗ	γ-НСН	ΣΗCΗ	NCA-MA	NCA-CMA
			13/2/2023	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
Aguas	Cantabria-	L-N10	25/5/2023	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
Costeras	Matxitxako		23/8/2023	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С
			20/11/2023	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,0000	С	С

Tabla A10 Resultados 2023. Concentraciones (μg kg⁻¹) para cada congénere de HCH y ΣHCH en los sedimentos muestreados en las estaciones aguas de transición del Nerbioi interior, Nerbioi exterior y litoral.

Categoría	Masa	Zona	Estación	Fecha	α-НСН	β-НСН	δ-ΗСΗ	ε-ΗСΗ	γ-НСН	ΣΗCΗ
	Principales tributarios	Ibaizabal	E-N10	13/02/2023	<1	<1	<1	<1	<1	0
	Bajo Ibaizabal	Asua	E-N15	13/02/2023	<1	<1	<1	<1	<1	0
Aguas de transición	Bajo Ibaizabal	Gobelas	E-N17	13/02/2023	<1	<1	<1	<1	<1	0
	Abra oxtorior v li	E-N20	02/03/2023	<1	<1	<1	<1	<1	0	
	Abra exterior y li	E-N30	02/03/2023	<1	<1	<1	<1	<1	0	
	Rio Ibaizabal III	Ibaizabal	IBA306	27/09/2023	<10	<10	<10	-	<10	0
	Rio Nervión I	Nerbioi	NER258	26/09/2023	<20	<20	<20	-	<20	0
Ríos	Rio Nervión II	Merpioi	NER520	26/09/2023	<10	<10	<10	-	<10	0
	Rio Kadagua IV	Kadagua	KAD504	26/09/2023	<10	<10	<10	<10	<10	0
	Asua-A	Asua	ASU160	26/09/2023	<10	<10	<10	<10	<10	0

Tabla A11 Resultados 2023. Concentraciones (μg kg⁻¹ peso fresco (PF)) para cada congénere de HCH y ∑HCH en la biota muestreados en las estaciones aguas de ríos.

Categoría	Masa	Zona	Estación	Fecha	Especie	α-НСН	β-НСН	δ-ΗСΗ	ε-ΗСΗ	γ-НСН	ΣΗCΗ
	Rio Ibaizabal III	Ibaizabal	IBA306	14/08/2023	Luciobarbus graellsii	<10	<10	<10	<10	<10	0
	Rio Nervión II	Nerbioi	NER520	19/08/2023	Luciobarbus graellsii	<10	<10	<10	<10	<10	0
Ríos	Rio Nervión I	Nerbioi	NER258	15/06/2023	Luciobarbus graellsii	<10	<10	<10	<10	<10	0
	Asua-A	4	ASU160	08/09/2023	Luciobarbus graellsii	<10	<10	<10	<10	<10	0
	Kadagu	a	KAD504	10/07/2023	Anguilla anguilla	<10	<10	<10	<10	<10	0